Lite Paper v2.0

Cvborg Network

Barath Kanna ¢« Megha Varshini Tamilarasaon

Abstract

We present a formal specification of the
Cryptographically Yielded Blockchain-
Orchestrated Resource Grid (CYBORG)
chain, a decentralized Al inference
protocol that integrates a Substrate-
based runtime with multiple interoperable
local peer-to-peer Al inference networks.
Each network comprises heterogeneous
Al-compatible hardware, optimized for
domain-specific machine learning
applications and orchestrated via a
blockchain-backed consensus
mechanism.

CYBORG, built on Polkadot, establishes a
distributed Al execution environment
where inference workloads are
partitioned and executed across a

network of embedded accelerators.

Each Al miner participates in the
computational process while embedding
a ZKML-enabled certification module,
ensuring verifiable proof of execution
without exposing model parameters or
inference data. This cryptographic
attestation mechanism mitigates
adversarial modifications in the inference
pipeline and guarantees deterministic
correctness in model outputs.

The protocol enables low-latency,
hyperlocal Al inference infrastructure at a
global scale, optimized for real-time Al
systems such as humanoids, autonomous
robotics, and mission-critical cyber-
physical systems. By leveraging provably
secure computation fault-tolerant,
trustless

Lite Paper v2.0

Al execution framework that ensures
scalability, privacy, and economic viability
for next-generation machine intelligence

Cyborg is built with Vision 2030 in mind,

fostering Al adoption through a
decentralized, cost-efficient, and
privacy-preserving inference network

that supports the infrastructure demands
of an Al-driven future.

Introduction
11 Nomenclature

In this paper, we introduce Cyborg
Network, a decentralized, blockchain-
governed Al inference protocol designed
to orchestrate globally distributed Al
processing nodes. Cyborg Network
leverages a hybrid incentive model,
integrating both cryptographic rewards
and fiat-based incentives, to drive
enterprise adoption while ensuring
regulatory compliance.

The term CYBORG originates from its
underlying architectural principle:
Cryptographically Yielded Blockchain-
Orchestrated Resource Grid. This
nomenclature reflects its core design—a
decentralized system where Al workloads
are securely allocated, executed, and
verified across a distributed network of
inference nodes.

An early conceptual version of Cyborg
Network was first outlined in research
discussions on off-cloud Al inference
scalability, addressing the challenges of
cost-efficiency, data sovereignty, and
fault tolerance. Unlike conventional
cloud-based Al execution models, Cyborg
Network proposes a globally scalable,
trustless

Al infrastructure that
deterministic Al processing
cryptographic attestation

ensures
with

1.2 Driving Factors

A decentralized Al inference network
must be fault-tolerant, cryptographically
verifiable, and economically sustainable.
Traditional cloud-based inference
pipelines suffer from latency constraints,
cost inefficiencies, and opaque execution
environments, making them unsuitable for
Al systems requiring real-time,
deterministic, and privacy-preserving
computation. Cyborg Network introduces
a blockchain-governed, hyperlocal Al
execution layer, eliminating single points
of failure and ensuring inference
workloads remain provably correct,
accessible, and censorship-resistant.

Bitcoin demonstrated the viability of
decentralized economic coordination,

ensuring immutable and censorship-
resistant transactions. Ethereum
expanded this model with Turing-
complete smart contracts, unlocking

programmable economic mechanisms but
still constrained by execution costs and
state coherency limitations.

Polkadot further evolved the paradigm by
enabling specialized, interoperable
blockchains, optimizing both scalability
and cross-network composability. Cyborg
Network builds on this foundation,
integrating zero-knowledge attestations,
decentralized scheduling, and a hybrid
incentive model to enable distributed,
privacy-preserving Al inference at scale.

https://www.vision2030.gov.sa/en

Lite Paper v2.0

The architecture is governed by five core
principles:

1. Resilience = Byzantine-resistant
execution with no reliance on centralized
entities.

2. Verifiability - ZKML-powered proof
generation for deterministic and tamper-
proof inference validation.

3. Scalability - Adaptive inference
placement across geographically
distributed Al accelerators, optimizing for
latency and efficiency.

4. Economic Alignment - A hybrid
incentive model, combining crypto-
economic staking mechanisms with fiat-
based enterprise adoption pathways.

5. State Coherency - Efficient cross-node
synchronization, ensuring computational
consistency across dynamic workloads.

Cyborg Network enforces deterministic
execution guarantees while ensuring Al
models operate with cryptographic
integrity, low-latency response times, and
regulatory-compliant data sovereignty. By
extending Polkadot’'s principles of
scalability, interoperability, and economic

flexibility, it establishes a globally
distributed, blockchain-secured Al
processing framework, advancing
decentralized inference beyond

traditional paradigms.
1.3 Fundamentals

This section covers the core principles
that underpin the design and functionality
of our system, providing the necessary
technical background for understanding
its implementation.

1.3.1 Neural Networks

Neural Networks, structured as
interconnected layers of artificial
neurons, execute mathematical
operations on input data through

computational units known as operators.
The connectivity of these layers s
governed by weighted edges, which are
iteratively adjusted during training,
allowing the model to learn. These
weights, or parameters, directly influence
the computational and memory demands
of inference.

As neural networks scale in complexity,
so do the computational requirements
and memory footprint necessary for both
training and inference. Increased depth,
neuron count, and architectural
sophistication introduce an exponential
rise in mathematical operations. Each
operation demands storage and
processing, creating bottlenecks on
resource-constrained devices.

Inference in Deep Neural Networks
(DNNs) involves propagating input data
through successive layers to generate an
output. Two primary constraints impact
this process:

1. Memory footprint - The storage
required for model parameters and
intermediate activations.

2. Computational intensity — The Giga
Operations Per Second (GOPS) needed
for execution.

A device with inadequate memory cannot
store the entire model, rendering
inference infeasible. Similarly, limited
computational throughput may introduce
excessive latency, making real-time Al
processing impractical on lower-powered
hardware.

Lite Paper v2.0

To address this, we frame the core
problem as: How can large-scale Al
inference be performed on hardware-
limited devices? In practical terms, how
can Al applications leverage high-
capacity models without being
constrained by local computational limits?

By abstracting DNNs as computational
graphs, where data (tensors) flows
between operators, we can decompose

inference into distributed workloads.
Tensors, which represent multi-
dimensional data structures, are

categorized into:

* Input tensors (X) — External inputs or
static parameters.

e Activation tensors (Y) - Intermediate or
final outputs generated by operators.

In the context of Cyborg Network, we
delegate tasks to a localized cluster of
custom Al accelerators that aggregate
the processing as a unified network by
combining individual differential neural
layers processed at different machines
within the same virtual network.

1.3.2 Edge Computing

Edge computing departs from traditional
cloud-based architectures by executing
computation closer to the data source,
reducing latency and optimizing resource
utilization. Unlike cloud models, edge
computing distributes computational
tasks across intermediate nodes such as
cloudlets, micro data centers, or
dedicated inference hardware, minimizing
data transmission overhead.

Shi et al. [4]-[6] define edge computing
as a network edge execution paradigm
where downlink data corresponds to
cloud services, and uplink data
represents the Internet of Everything
(IoE). Satyanarayanan [8] describes it as
a

model that deploys computing and
storage resources closer to mobile
devices and sensors to reduce latency.
Zha et al. [9] extend this definition by
emphasizing resource unification across
geographically and network-proximate
nodes, enabling distributed compute,
storage, and networking for application
services.

In an edge computing framework,
workloads are offloaded from cloud
infrastructure to edge nodes, leveraging
localized compute resources to process
data in real time. This approach enhances
network efficiency, reduces reliance on
cloud data centers, and supports low-
latency, high-bandwidth applications. The
architecture integrates compute, storage,
and networking capabilities at the edge,
addressing key industry requirements
such as real-time processing, application
intelligence, security, and privacy
preservation [10].

Edge computing is widely adopted in
scenarios demanding high-throughput,
low-latency execution, particularly in Al-
driven workloads, industrial automation,
and IoT applications. Research continues
to advance edge-native architectures,
optimizing distributed execution models
for fault tolerance, workload scheduling,
and secure data processing [10]-[14].

1.3.3 Zero-Knowledge Machine
Learning (ZKKML) in
Decentralized Inference

The increasing opacity of proprietary
machine learning (ML) models has
created fundamental challenges in model
transparency, bias auditing, and result
reproducibility. While open-source model
architectures and weights have
traditionally enabled scientific
reproducibility and external validation, the
commercialization

Lite Paper v2.0

of foundation models—along with safety
concerns over unrestricted access—has
driven the industry towards closed-
source deployments. This shift
significantly impairs external verification,
raising two major concerns:

1. Unverifiable Performance Claims -
Model providers can assert benchmark
superiority without independent
validation, leading to skepticism about
reported accuracy, robustness, and
efficiency.

2. Unintended Bias and Opaque Decision-
Making - Proprietary models prevent
third-party auditing for algorithmic
fairness, limiting the ability to detect and
mitigate systemic biases in real-world
deployments. Algorithmic audits and API-
based evaluations offer partial solutions
but remain impractical for high-risk ML
applications without public interfaces—
such as law enforcement predictive
models, financial risk assessments, and
internal enterprise Al systems. These
limitations necessitate cryptographic
mechanisms that allow external validation
without exposing proprietary model
weights or sensitive inference data.

1.3.4 Verifiable Al Inference via
ZKML

Zero-Knowledge Machine Learning
(ZKML) enables proof-based verification
of model execution, ensuring that an Al
system adheres to declared performance
characteristics without revealing its
internal workings. Using succinct Zero-
Knowledge Proofs (ZKPs), an ML provider
can generate cryptographic attestations
that verify:
e The model executed correctly on a
given input without tampering.
« The inference result adheres to
documented performance standards
(e.g., accuracy, fairness constraints).

e The same model architecture and
parameters persist across different
inference instances, preventing silent
model degradation over time.

1.3.5 Integrating ZKML in
Decentralized Al Architectures

To enforce verifiable Al execution across

decentralized Al infrastructure, we

implement a hybrid ZKML framework
that:

1. Generates Zero-Knowledge Proofs for
Model Execution — Ensuring integrity
and correctness of inference results,
even on untrusted nodes.

2. Enables Selective Disclosure for Model
Auditing - Providing cryptographic
evidence of fairness and safety
without exposing proprietary model

internals.

3. Ensures On-Chain Verifiability -
Embedding ZKML proofs into
blockchain-based decentralized
inference systems for persistent,

tamper-proof validation.

D)

We shouldn’t just trust the claims of Al model providers

There are cost and
efficiency reasons for
model providers to use
cheaper or worse models

Impossible to know if a
provider switches out or
changes the model it's
using at inference

High-risk applications
require verifiably consistent
models that are aligned and
properly evaluated

Q(,'o 0 o5
o o 0Q Q 7O =
SReRY (= =N
\ J
CED N

Create a Verifiable Evaluation Attestation for a model

A trained model is
evaluated on benchmark
data by the developer

Zero-knowledge proofs
of valid inference are
generated

These proofs are packaged
and shared as a verifiable
evaluation attestation

/ Verifiabls
@} zkml -l — :
: . 1

Check that model inference is correctly and honestly performed

The closed-source model A new proof of model
is deployed to a future inference is generated for
user by a provider this user

Checks if this proof !
matches the model weights |
hash published earlier

e O
] O\\\j zkml
o0

an)

0+

Lite Paper v2.0

1.4 Trustless Al Execution in
Distributed Inference Networks

As Al inference systems become
increasingly integrated into critical
domains such as healthcare, finance, and
security, the need for verifiable execution
mechanisms grows in importance.
Traditional inference pipelines rely on

centralized control and opaque
verification processes, limiting trust in
model outputs. In decentralized

environments, where multiple nodes
participate in inference computation,
ensuring the integrity and privacy of Al
execution becomes a complex challenge.

141 Security and Privacy in
Distributed Al Inference

In high-stakes inference scenarios,
cryptographic proof mechanisms are
required to guarantee correctness while
preserving confidentiality. A primary
challenge arises when inference nodes
operate outside a trusted execution
environment, introducing risks such as:

* Result Tampering — Malicious or faulty
nodes may return manipulated outputs.

e Unverifiable Execution - Model
computations occur as a “black box,”
preventing external validation.

» Data Privacy Leakage — Sensitive input
data may be exposed to untrusted
compute nodes.

To mitigate these risks, Zero-Knowledge
Proof (ZKP) systems provide a framework
for verifiable yet privacy-preserving
inference execution. By leveraging
succinct proofs, inference nodes can
cryptographically demonstrate that

computations were executed correctly
without revealing model internals or input
data.

1.4.2 Zero-Knowledge
Verification for Model Integrity

Decentralized inference introduces
unique security threats, as individual
nodes may behave dishonestly, affecting
aggregated outputs. To address this,
Zero-Knowledge Proof-based attestation
mechanisms enable:

* Proof of Correct Execution — Each node
generates a ZKP confirming that its

assigned model computations were
performed as expected.
 Selective Disclosure for Auditing -

Cryptographic attestations allow external
verification of inference correctness
without exposing proprietary model
architectures.

e Tamper-Proof Verification — On-chain
integration of proofs ensures that any
deviation from declared performance
constraints is detectable.

These verification mechanisms provide a
cryptographic assurance layer, ensuring
that Al inference outputs remain
trustworthy even in untrusted or
adversarial environments.

1.5 Scalability Challenges in
Secure Inference

Despite the advantages of cryptographic
verification, Zero-Knowledge Machine
Learning (ZKML) remains computationally

expensive. Existing ZKP-based
verification methods introduce
substantial latency, with some proof-
generation processes taking several

minutes per token in large-scale

Lite Paper v2.0

language models. This computational
overhead conflicts with the real-time
performance demands of Al applications,
necessitating further optimizations in:

* Proof Generation Speed — Reducing the
computational cost of generating
verifiable inferences.

* Efficient Proof Aggregation — Enabling
multiple inference nodes to contribute
proofs collectively, rather than verifying
each result in isolation.

e Hybrid Off-Chain and On-Chain
Validation - Balancing security and
efficiency by performing proof generation
off-chain while committing essential
verification data on-chain.

Addressing these challenges is critical for
the practical deployment of verifiable
inference across distributed Al networks,
ensuring that trustless execution does
not compromise efficiency.

2. ZK Verification Process

This section explores the application of
Zero-Knowledge (ZK) techniques in
verifying Al inference integrity. It details
how models are decomposed, computed
across distributed nodes, and securely
validated without exposing sensitive data

211 Model Decomposition and
Verification.

A fundamental aspect of decentralized Al
inference is the division of models into
multiple computational components, each
processed by separate computing nodes.
These nodes execute their assigned
operations and forward results to a
central verifier. For example, a foundation
model

like LLaMA-3 [11] can be decomposed
layer-wise, where each node sequentially
processes specific layers, or width-wise,
enabling parallel execution. The choice of
decomposition strategy depends on
application-specific requirements, and
our approach supports both.

To ensure correctness and integrity in
this setting, Zero-Knowledge Proofs
(ZKPs) enable verification without
exposing proprietary model weights. Each
computing node (prover) generates a
proof of correct inference execution,
which the central server (verifier)
validates without accessing the model's
internal parameters. This prevents
adversarial inference attacks while
maintaining privacy.

21.2 Commitment and Proof
Generation.

Each node commits to its assigned model
fragment and computation results using
cryptographic commitments. The proof
generation process follows three steps:

1. Commitment: The prover commits to its
model fragment, ensuring its integrity
while keeping the weights hidden. This is
achieved using generalized Pedersen
commitments over an elliptic curve group
G, formulated as [12]:

d
Commit(s, rs) = h™5g® = 17 [¢,
=1
M

2. Proof Generation: The prover executes
inference and produces a proof
demonstrating correct computation under
a finite field F, ensuring that operations—
including matrix multiplications, activation
functions, and token transformations—
are faithfully executed

Lite Paper v2.0

3. Verification: The central server verifies
the proof, ensuring that the model
decomposition is correctly followed and
computations are consistent with
expected outputs. This validation can be
performed interactively or non-
interactively using protocols such as
Sum-Check for arithmetic operations and
bit decomposition or lookup tables for
non-arithmetic functions.

10 !|\\‘. \\"II

P -« challenger \V/
o}
@ O

Witness

TOP SECRET
HI 4 w2 I

Figure 1: Zero-knowledge proof of circuit 10 = (w1
+ w2)(w2 + 1) between a prover (P) and a verifier
(V). Hereby, the goal of the prover is to prove to
the verifier that P knows a w1 and w2 such that
the claimed result “10” is indeed calculated by the
equation (w1 +w2)(w2 + 1) (which is denoted by a
circuit). The witness w1l = 4 and w2 = 1 are the
secret of the prover. Zero-knowledge proof
consists of a commitment process (denoted by
the safe box) in the beginning, followed by
several back-and-forth challenge and response
processes between P and V in the interactive
scenario. In the non-interactive scenario, the
prover can challenge him or herself by the Fiat-
Shamir heuristic [13] and the verifier only needs
to verify the last response from the prover.

®®+

challenger

B ON

Zero-knowledge
V can't know
the witness

if the circuit is valid,
the verifier accepts

if the circuit is invalid,
the verifier rejects

Mathematically, let f:F¢_, [represent the
transformation performed at a given layer
of a foundation model, where the prover
computes y = f(x, w) for some private
model parameters w. The verifier must
confirm that y is computed correctly
without learning w. This is achieved
through a ZKP of correct execution.

21.3 \Verification of Model
Execution

Each prover commits to the computation
and provides a proof of correctness. The
verification process ensures:

1. The claimed inference follows the
expected model structure.

2. The computations remain within the
expected finite field constraints.

3. The proof remains efficient, avoiding
excessive computational overhead.

Since neural networks contain both

arithmetic (e.g., matrix multiplications)
and non-arithmetic (e.g., activation
functions, token transformations)

operations, verification requires encoding
both types within the proof system.

21.4 Encoding Non-Arithmetic
Operations in Zero-Knowledge
Proofs

A fundamental challenge in verifying
neural network execution lies in non-
arithmetic operations such as activation
functions. Two primary techniques are
employed:

1. Bit Decomposition for
Functions

Consider the RelLU activation function
[14]:

A=sign(Z) © abs(Z2),

@)

Activation

where © is the Hadamard product, abs
(Z) is the element-wise absolute value,
and

Witness —) Open: Allow V to evaluate g
N il atarandom vector (r,...,7,)
/ TOPSECRET \ ;'
(_Polyg) 7
— P 0= Y gl V
e > i H = gi0) + gi(1)
chalenger ,~F
0= Y gl
fe » o if i) = ig:(0) + g:(1)
challenger r,~F
s =
p i galr2) =lg:(0) + gs(1)
| ifg(r)
Figure 2: Sum-Check protocol for H = (@102 z0)e{0,1}0 I(TL T2, 00y To).
0, z<0,1, otherwise
sign (z)

https://people.cs.georgetown.edu/jthaler/sumcheck.pdf

Lite Paper v2.0

We denote the binary representation of z
as (Zo,zl,...,zQ) , Where Q=log,p (e.g.,
128 or 256 in a finite field of order p). The
bit decomposition must satisfy:

?

0=z(z,—1), Vie{0,....0}.
4

To verify RelLU execution in zero-
knowledge, we enforce reconstruction
constraints:

? 0
2=(2z,— 1)), 29"z,

=1
(5)
? Q
a=z Z 20-i, |
0 [
=
(6)

Using the Schwartz-Zippel Lemma, the
correctness proof can be merged into a
single Sum-Check equation:

2] 2] a T
(22,- 1) [ZI 2(*‘-(;,.]7 2+ (:UZI 20-iz —a)r+ Z’{J;i(:; 1) ri*2=0,
i= i= i=
(7)

where r~ F is a randomly chosen field
element to ensure probabilistic soundness.

215 Lookup Table Verification
for Non-Arithmetic
Computations

For operations such as Softmax, which
are computationally expensive in a ZKP
setting, we use a lookup table approach.
Let T be a shared table containing valid
input-output pairs for a non-arithmetic
operation f, structured as:

T={(Ty.f(Ty))c F (Ot

C))

To prove correct execution of f, the
prover must show that its computed
output Y matches a valid table entry. This
is formulated as a subset argument:

d,—1 ;
1 2 7

5 i+d :
E r’XI_+ E r lYl.e E Coli(T)r*.
i=0 i=0]
%)

Using the Sum-Check protocol, subset
verification reduces to proving that the
following polynomial identities hold:

IT x+s)=]] (x+1)°.
i€ [n,]

i€ [n]]
(10)

By taking the logarithmic derivative, we
derive the final rational function identity:
Y =y

ie[nl]X+ Si ie[nz]X+ Ti
()

The prover commits to ¢,=1j:5;=7,}1, and this
can be verified efficiently in zero-knowledge
using the Sum-Check protocol.

The Pedersen commitment (1) satisfies
the binding property: once sent to the
verifier, the opening information (r S)
cannot be changed by the prover. At first
glance, proving the ability to "open" the
commitment may seem to require
revealing the witness s to the verifier,
potentially violating the zero-knowledge
property. However, this concern s
mitigated due to the homomorphic
property of the Pedersen commitment.
Specifically, given two commitments
Commit (S, r;) and (S, r2) corresponding
to tensors S: and §:, we have:

Commit(SI, rl) . Commit(Sz,rz) =Commit(SI + Sz, ri+ r2) s

which results in the commitment of (S: + S2).

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Commitment_scheme

Lite Paper v2.0

This property enables the prover to
demonstrate knowledge of S without
disclosing it by committing instead to a
linear transformation:

S'«S-e+ D,
(12)

where D is a d-dimensional hiding vector
chosen by the prover, and e is a random
scalar challenge sampled by the verifier.
The vector D ensures S.e+D that appears
random to the verifier, preserving zero-
knowledge. The existence of e guarantees
special soundness: executing the
protocol with two different challenges e:
and e: leads to

S’2=S-62+D. S'I=S-el+D,

(13)

Since there are 2d unknowns (S and D)
and 24 equations, two valid transcripts (S,
e, D) and (S, ez, D) uniquely determine S
and D through Gaussian elimination,
achieving special soundness.

Algorithm 1 Commitment
Opening Procedure

This algorithm enables the prover to
convince the verifier that they know a
witness se * and a witness re F that are
openings of commitments:

Commit(¢, rt) : =hrfg’,

such that{s,y)=r, where A, g are randomly
sampled generators from an elliptic curve
group. The algorithm is provably
complete, exhibits zero-knowledge, and
ensures special soundness.

Steps:

1. Publicly known generators 4, g, g, ,
g, are randomly sampled from the elliptic
curve group G.

2. The prover sends commitments:

d
. N Si
cS=Comm1t(S,rS) =h SI I g%

i=1

¢, =Commit(z,r) :=h"'g".

3. The prover picksDe {0,1,...,p—1}4and
hiding factors r,.r,e{0.1,....p-1} , then

sends commitments:

d

p r D.
cD=Comm1t(D,rl) =h 1H By %

i=1

C<D’},>=Commit(<D,y>, rz) : :h":g {D.y).

4. The verifier selects a random challenge
e€{0,1,....,p— 1} and sends it to the prover.
5. The prover transformed
values:

computes

S':=S-e+ D, rei=reetr,,

r'i=r-e+r,.
6. The prover sends (s',rg) and 7, to the
verifier. These conceal S.7g%7,, ensuring
zero-knowledge.

7. The verifier computes:

d
3 ' AT S'i
cs,:Commlt(S ,rS,) =h SI_IIgi s
=

8. The verifier computes :=<s',y) and
its commitment:

¢,'=Commit(t',r) c=h'rg!.

It then checks:

?

(NI
Cl _Ct C<D,y>'

9. If both checks pass, the verifier
accepts; otherwise, they reject.

This algorithm ensures that the prover
can demonstrate knowledge of S and ¢
without revealing them, leveraging the
homomorphic properties of Pedersen

10

Lite Paper v2.0

commitments. The zero-knowledge
property remains intact, while the
protocol guarantees soundness under
multiple executions.

217 Proofs
Operations

for Arithmetic

Multilinear Extension

Zero-knowledge proofs primarily operate
within a finite field F, rather than the real
field R used in floating-point calculations.
Arithmetic operations in this setting
consist of addition and multiplication,
which can be efficiently verified using the
Sum-Check protocol, particularly the GKR
protocol [15, 16]. The key idea in the
Sum-Check protocol is to express a d-
dimensional tensor se Fd as a multi-
variable polynomial SP;FIOgZd_,F via a
transformation known as multilinear
extension [18]:

S(0=" 2,

be {0, 1) 81

(14)

S(b) B, (u.b).

where ;e 0.1} represents the binary
index of tensor S, and (... :F*'xF*~F IS
the unique Lagrange interpolation
polynomial:

log,d

B (b =]T Cup+ 1=up1-5)),
i=1
(15)
which satisfies the interpolation property:

I, ifb=b;
ﬂe(bl’b2) = <L

0, otherwise
(16)

This guarantees that S, is the unique
multilinear polynomial over F such that

So(u) = S(u) forall ue {0,1}4

Using this multilinear extension, we can
rewrite arithmetic verification as the
verification of the sum of a multi-variable,
low-degree polynomial g:

9

H= Z g(xlaxza'uaxv)’
(xl,xz,...,xv) e {0,1}Y
(17)
which simplifies verification in zero-

knowledge proof systems.

2.1.8 Sum-Check/GKR Protocol

Algorithm 2 describes the Sum-Check
protocol (also known as the GKR protocol
[15])for verifying Equation (17). The
protocol proceeds in rounds [17]. In the
first round, the prover sends a polynomial
g1 (X1) and claims:

9

gl(X1)¥ Z

(xy-x,) € 0,1}V

g(X Xy .0x).

(18a)

If this claim holds, then H=g:(0) + g:(1) . To
validate, the verifier randomly samples
r1 ~ F and requests proof that:

4
Z g(rl,xz,...,xv).

g C)I=
sonx) €10,13v7 1

(x,

(18b)
In the second round, the prover sends
g2(Xz) and claims:

9

o (X)= Y

(%3.%,) € (0,1} 2

By applying the Schwartz-Zippel Lemma
recursively, the protocol continues until
the final round, where all ’ claims can be
verified with high probability (failure
probability at most d/|F|, where dis the

n

Lite Paper v2.0

polynomial degree). The final claim g (r)
= g(r), Ty ceveeien. ,) can be verified via the
commitment opening. The Sum-Check
protocol ensures completeness through
its structured proof construction.
Soundness follows from recursive
applications of the Schwartz-Zippel
Lemma, while zero-knowledge properties
are guaranteed by the Pedersen
commitment scheme.

2.1.9 Reducing Linear Layers to
Sum-Check Protocol

Linear layers are fundamental components
of foundation models and can be
mathematically represented as matrix
multiplications. Given matrices A,B,ce Fx»
such that C=4B, we define functions:

F iy, b og el 10 ""-’1og2n) Ay
(19)

Where (i}:-- i),) and (j» -..,jlogzn)represent

binary indices of i and j, respectively. The

multilinear extensionsf ,.f ,.f . of these

functions satisfy:

’F:'(r-|’ : “‘i\nl-_,u‘j\' I‘I:jhhll_.‘laj = E -F.-a{ J.|'- e

be (0, 1)

(20)

r-|..._-,u’b) i RENEE "-";lnl-,n) :

Since Equation (20) conforms to the form
of Equation (17), we can apply the Sum-
Check protocol to verify the correctness
of linear layers. Specifically, we define a
degree-2 polynomial

g(b) =f (i, ...,ilogzn,b) f 5(bjps 5T tog)

and verifyH=f (i, ...,ilogzn,jl, ...,jlogzn)

at a random evaluation point .

. . . . log,nx log,n
(11, ""lloan’Jl’ ""]logzn) eF
This enables the efficient verification of
matrix multiplications within zero-
knowledge proof systems.

3. System Design & Operation

This section provides an in-depth look
into the structure and functionality of
Cyborg Network. We detail how our
network topology, architecture, and
workflow enable Al inference at the edge.
Additionally, we explore the role of miners
in contributing computational power and
the Cyborg Connect application that
allows users to deploy, manage, and
monitor Al workloads efficiently.

3.1 Network Topology

The Network consists of multiple
interdependent components, each
facilitating different aspects of Al
inference execution and verification.
These components include the
blockchain, miner, Cyborg Connect
(frontend), Oracle Feeder, Cyborg Proxy,
and Storage Nodes, as illustrated in
Diagram 2.

* Attestation Report (Registration)
Miner Parachain =
——]

,,,,,,
e ;

Miner Base

«—a rver
{ l— CF (Atternatively this can be
Storage SEV Confidential EV S doneviththe oracle)
(-

— Cyborg Connect <« 1«4 Cyborg Proxy Oracle Feeder

311 Worker and

Execution Layer

Nodes

Miners within the network function as
worker nodes, a blockchain-native node
definition specific to Cyborg. These
nodes are non-consensus participants,
operating independently of the
blockchain’s validation layer. Upon joining
the network, a worker node remains in an
idle state until assigned an Al model for
inference by the runtime. Task
assignment follows a

12

Lite Paper v2.0

deterministic scheduling mechanism that
factors in node availability, compute
capacity, and latency constraints.

Once inference execution begins, the
miner generates periodic resource
consumption reports, logging memory,
compute cycles, and power usage. These
reports are relayed to the blockchain to
maintain an immutable record of
execution costs. In parallel, the miner
generates ZKML proofs, which serve as
cryptographic attestations of the model’s
output, ensuring computational integrity.
The blockchain verifies these proofs to
validate inference correctness without
exposing the underlying model weights or
input data.

Model

312 Storage and

Management

Al models and associated weight files are
stored in a distributed, cryptographically
secured storage layer. This layer is
implemented using CESS, a decentralized
storage protocol optimized for high-
performance data retrieval. Models are
encrypted before storage, and only
authorized worker nodes can decrypt
them upon task allocation. The storage
nodes operate independently from
inference nodes, ensuring a separation
between compute and data layers.
313 User Interaction and
Authentication

Users interact with the system via Cyborg
Connect, a web and mobile interface for
managing inference requests. The interface
does not directly communicate with the
blockchain; instead, a proxy server handles
user authentication and dashboard data
retrieval. Private key authentication is
required to decrypt user-specific inference
logs, ensuring that only authorized users

can access their execution data.

314 Oracle
Data Flow

Integration and

The Oracle Feeder serves as a bridge
between the blockchain and the off-chain
inference network. It transmits task
parameters, model assignments, and
inference results between the on-chain
scheduling logic and off-chain worker

nodes. The oracle operates
asynchronously, ensuring low-latency
data propagation while maintaining

message integrity through cryptographic
signatures.

The architecture follows a modular design,
with independent execution, storage, and
verification layers interacting through
cryptographically secured communication
channels. Each component operates in a
permissionless environment, where task
allocation, execution verification, and cost
settlement occur without a centralized
coordinator.

3.2 The Miner

The Cyborg miner is a purpose-built,
high-performance edge server designed
as an Al accelerator and blockchain node.
Built on Nvidia’s Jetson architecture, it
integrates various hardware components
to serve dual functions:

13

Lite Paper v2.0

as an Al inference engine and as a fully
operational blockchain node within the
Cyborg Parachain ecosystem. The miner is
equipped with 2TB of NVMe SSD storage,
leveraging AES encryption for data-at-rest
protection, ensuring high throughput and
secure storage for large-scale Al models
and datasets.

In terms of computational capability, the
Cyborg miner is optimized for Al inference,
capable of delivering up to 200 TOPS

(Tera Operations Per Second). This
performance enables the efficient
execution of computationally intensive

models such as deep learning inference
tasks.

The miner operates strictly within the
Cyborg blockchain network. It is pre-
configured to function as a worker node in
the blockchain, which ensures that all
operations, including Al model
assignments and task execution, are
orchestrated through the Cyborg Connect
platform. Communication with the miner is
mediated via the blockchain’s runtime
environment, meaning the miner is not
directly controlled by external commands
but rather by on-chain instructions,
enhancing security and consistency.

Geo-tagging of the miners ensures precise
location tracking for optimal model
deployment. This feature allows users to
deploy models on miners located in
specific geographic areas, improving
inference performance by reducing
latency and increasing computational
efficiency.

The Cyborg miner is designed to be Zero-
Knowledge (ZK) ready, supporting Zero-
Knowledge Proof (ZKP) mechanisms. This
feature facilitates privacy-preserving
computations and secure validation of Al

model outputs without disclosing
sensitive data. The ZK architecture is fully
integrated into the miner's execution
pipeline, enabling the secure execution of
models while maintaining confidentiality
and integrity, particularly in scenarios
requiring proof of correctness without
exposing the underlying model or input
data.

The Cyborg miners will be exclusively
manufactured and distributed globally by
our organization, ensuring consistent
quality control and supply chain
management. These miners will be made
available for purchase directly to the
public, with full technical support and
integration capabilities. Additionally, we
will establish a dedicated Customer
Success team, composed of experts in
both Al and blockchain technologies, to
assist users with any inquiries or technical
challenges they may encounter. The team
will provide support for deployment,
configuration, troubleshooting, and
optimal usage of the Cyborg miner within
the broader ecosystem, ensuring a
seamless user experience.

3.3 Cyborg Connect
Cyborg Connect is a web and mobile-

native software platform designed to
deploy pre-trained Al models across

globally distributed Al miners.

14

Lite Paper v2.0

Built on the Cyborg blockchain, the
platform leverages its secure and
transparent architecture while integrating
key APl-backed services:

e Payment Gateways - Supports
seamless transactions in fiat and
cryptocurrency, offering pay-per-use and
subscription options.

e KYC & Compliance — Implements KYC/
AML checks via Sumsub to ensure
regulatory compliance while maintaining
privacy.

e Resource Optimization — Dynamically

allocates workloads based on
performance, availability, and cost
efficiency.

e Model & Data Security — Ensures

secure model deployment with CESS-
encrypted storage and privacy-
preserving techniques like homomorphic
encryption and split learning.

e Real-time Monitoring & Analytics -
Provides insights into Al workload
performance, miner uptime, and
operational efficiency through an intuitive
dashboard.

Deployment Process

1. The user submits a task via Cyborg
Connect.

2. The app generates an ephemeral
keypair and wuses a Diffie-Hellman
exchange with the worker’s public key to
establish an encryption key for CESS.

3. The ephemeral public key and model
file ID are recorded on the Cyborg
Parachain.

4. Miners monitor the parachain for task
assignments.

5. Using the Diffie-Hellman secret, the
miner downloads and decrypts the model
(compilation may also be required).

6. The miner submits an attestation
report confirming its execution state.

7. The Cyborg Parachain validates the
attestation report.

8. The miner exposes endpoints for real-
time monitoring via Cyborg Agent and
inference result retrieval.

9. The user decrypts the results using
their Diffie-Hellman key.

4. Scalability and Security in Al
Workloads

Efficient Al deployment in a decentralized
infrastructure requires advanced
techniques to balance computational
efficiency, security, and privacy. This
section explores key optimizations such
as model compression and sharding for
resource-constrained environments,

along with privacy-preserving
mechanisms like secure multi-party
computation (MPC) and homomorphic

encryption. Additionally, we detalil
security protocols that ensure model
integrity, prevent adversarial interference,
and maintain confidentiality within Al
execution environments.

41 Model Compression
Deploying machine learning models in
production introduces constraints that

are often overlooked during prototyping.
In real-world applications, models must

15

Lite Paper v2.0

handle high request loads while
maintaining low latency and high
throughput.

e Latency: The time taken to generate a
prediction after receiving an input.

e Throughput: The number of inference

requests a system can process per unit
time.

Optimizing for these factors requires
accelerating model inference while
minimizing resource consumption. Model
compression techniques achieve this by
reducing model size and computational
complexity, often leading to significant
speedups. While compression primarily
targets memory efficiency, it also
enhances inference performance, blurring
the distinction between compression and
optimization. The following sections
explore key strategies for improving
model efficiency.

411 Low Rank Factorization

Low-rank factorization is a structured
model compression technique that
decomposes weight matrices in neural
networks into lower-rank approximations,
reducing both computational complexity
and memory footprint. Given a weight
matrix , the goal is to approximate it as
the product of two smaller matrices:

Wr AB, A€ Rm*k Be RkXn k< min(m,n)

This decomposition constrains the
network’s representational capacity while
preserving critical information, leading to
reduced inference latency and lower
memory usage.

In convolutional neural networks (CNNs), a
practical case of low-rank decomposition
involves factorizing 3x3 convolutions into

1x1 convolutions, as seen in SqueezeNet,
effectively reducing parameter count and
computational overhead.

In large language models (LLMs), low-
rank adaptation (LoRA) [18] applies a
similar principle to fine-tuning. Instead of
updating the full parameter set of a pre-
trained model, LoRA introduces low-rank
matrices A and B into specific layers,
allowing efficient adaptation to new tasks
with minimal additional parameters. By
freezing the original model weights and
optimizing only the low-rank matrices,
LoRA significantly reduces the
computational burden of fine-tuning while
maintaining expressivity.

41.2 Pruning
Pruning is a model compression
technique that reduces the size and
computational complexity of neural
networks by eliminating redundant or
low-importance parameters. Originally
introduced in decision trees to mitigate
overfitting by removing unnecessary
branches, pruning has since been
extended to neural networks, where it
involves removing weights (edges) or
entire neurons (nodes).
Pruning strategies fall into two main
categories:

e Structured Pruning: Entire neurons,
channels, or layers are removed, leading
to a direct reduction in the model's size
and computational cost. The resulting
weight matrices shrink, improving both
inference speed and memory efficiency.

e Unstructured Pruning: Individual
connections (edges) are removed,
creating sparse weight matrices. While
this does not reduce the model’'s nominal
size, it enables specialized sparse matrix

16

Lite Paper v2.0

optimizations for efficient storage and
computation.

Mathematically, given a weight matrix W,
pruning applies a mask M such that:

W=MoW, Mec{0,1}mxn

Where © represents the Hadamard product,
and M determines which parameters are
retained (1) or pruned (0).

The challenge lies in determining which
weights to prune while minimizing
accuracy degradation. Several
approaches exist, including magnitude-
based pruning (removing low-magnitude
weights) and more advanced techniques
such as Optimal Brain Damage (OBD) and
Optimal Brain Surgeon (OBS), which
leverage second-order derivative
information to assess weight importance.

We will employ low-rank factorization in
Cyborg Connect to reduce computational
overhead by decomposing large weight
matrices into smaller, low-rank
components. This enables efficient fine-
tuning and adaptation of pre-trained
models with minimal resource
consumption, optimizing performance
across decentralized Al miners.

Similarly, pruning eliminates redundant

parameters, reducing model size and
memory footprint without sacrificing
accuracy. By leveraging structured

pruning for direct computational savings
and unstructured pruning for memory-
efficient sparse representations, we
ensure Al workloads run with maximum
efficiency, maintaining high throughput
with minimal resource expenditure.

4.2. Secure and
Preserving Inference

Privacy-

Ensuring security and privacy in
decentralized Al inference requires robust
verification mechanisms and data
protection strategies. Our approach
balances efficiency with rigorous integrity

checks to mitigate risks such as
tampering, unauthorized access, and
data leakage. To achieve this, we

integrate Finality-Based Verification (FBV)
for model integrity and Split Learning (SL)
[19] for privacy-preserving inference.
These techniques enable secure
execution across decentralized Al miners
while maintaining high throughput and
computational efficiency.

4.21 Finality Based Verification

Given the computational and scalability
challenges associated with ZKML for
verifying the integrity of LLMs in
decentralized systems, we propose a
Finality-Based Distribution Verification
(CDV) strategy for general inference
scenarios. This method leverages the
collective agreement of multiple nodes to
ensure correctness and integrity of model
execution while preserving data privacy.
Finality-Based Verification
Process

1. Redundant Execution: A subset of nodes
{1, 2, ..., k} independently computes the
output yi for the same input x using the
model M with parameters 6:

Y. =M(x:0) Vi€ (1,2, ...k}

2. Output Collection: The outputs {y1, y2, ...,
yk} are securely collected for evaluation,
requiring efficient communication protocols
to protect data integrity.

3. Consensus Determination: A consensus

algorithm C evaluates the collected
outputs to determine an agreed-upon

17

Lite Paper v2.0

result ycon:

Yeon=CY 5Y5 -5y, D)

The consensus is valid if it meets a
predefined criterion, such as majority
agreement or a more sophisticated
statistical validation.

4. Verification and Finalization: If the
consensus result aligns with outputs from
a sufficiently large subset of nodes, the
model execution is verified. Otherwise,
discrepancies indicate potential integrity
issues, triggering further investigation or
corrective measures.

This Finality-Based approach ensures
robust verification of model integrity
across decentralized nodes, mitigating
the impact of faulty or malicious actors.

Verification in the Context of Model

Sharding

In decentralized Al, ML models may be
sharded across multiple nodes to
enhance scalability. Each node i
possesses a unique shard Mi of the
complete model M, necessitating a

specialized approach to CDV for
fragmented model execution.
1. Shard Redundant Execution: Each

shard Mi of the complete model M
undergoes redundant execution by a
designated subset of nodes. Each node
within the subset computes:

Y,].=Ml.(x;@i i) , Vj € Subset of nodes for Ml.

This redundancy enables Cross-
verification, strengthening the validation
process.

2. Redundant Output Collection and
Verification: The outputs {yi]1, vi,2, ..., yi,m}

for each shard i are collected and
evaluated through a shard-specific
consensus mechanism:

Yeon i=CillV; pYig oY b
The redundancy across nodes enhances
the detection of discrepancies or faults in
each shard

3. Shard Verification Completion: Upon
reaching consensus for each shard i, the
integrity of that shard’s execution is
confirmed before proceeding to the next
stage.

4. Model Reconstruction: Once each
shard has been independently verified,
the shard-specific consensus results
{ycon,1, ycon,2, ..., ycon,k} are combined
to reconstruct the final model output:

k
Yfinal: 21 ycon,i
1=

This comprehensive verification
framework ensures the correctness and
security of Al inference within
decentralized environments while
maintaining scalability and efficiency

4.2.2 Data Privacy Protection
via Split Learning

Recognizing the challenges posed by
encrypting data for use in decentralized

inference systems, we adopt Split
Learning (SL) as a pragmatic solution to
facilitate secure and efficient
computation on encrypted data.

Traditional encryption methods such as
Homomorphic Encryption (HE), while
securing data at rest and in transit,
render direct computation costly by
obscuring its format and structure.

18

Lite Paper v2.0

This limitation is particularly problematic
for processing with LLMs within a
decentralized framework, where data
privacy cannot be compromised.

Split Learning (SL) addresses these
concerns by partitioning the computational
model, allowing for data to be processed in
segments without revealing sensitive
information. In this approach, user data is
protected by ensuring that it is never
directly transmitted to any nodes—only the
data embeddings from specific layers are
exchanged, and each node accesses only
the embeddings of certain layers.

Consider a neural network model N, such
as Llama 2, composed of a sequence of
32 layers {L; L,,........., L;,}, each with its
own set of parameters 9, and
activation function ¢; . The input to the
network is X, and the output of the i-th
layer, given input x;, can be mathematically
described as:

al.=Ll.(xl.;@l.) =al.(Wl.xl.+ bl.)

where W, and b, are the weight matrix and
bias vector of the i-th layer, respectively,
and “; is a nonlinear activation function
such as RelLU, sigmoid, or tanh.

Assuming the model is split at layer &,
where the client handles layers {L,,.......,
L} and the server handles layers
{L, 2o , L;,}, the client computes the
intermediate representation Z as follows:

Z=c (W 0, (.0 (WX+b)..)+b)

This intermediate representation Z is then
transmitted to the server, which
continues the computation:

Y=0,(Wy05(.op (W Z4D,)) +D3)

The loss function LY, Y,,.) computes the
error between the network output Y and
the true labels Y, , and the gradient of

the loss with respect to the model's

parameters is computed through
backpropagation:
oL _ oL 9Y da,
—— =ChainRule , s ey
00 oY Jda 00
i 32 i
For privacy protection during the

transmission of Z from client to server,
differential privacy techniques may be
applied. Defining a privacy metric P that
quantifies information leakage from Z, a
proof of privacy preservation can be
demonstrated such that for any

€ -differential privacy guarantee, the
information leakage remains below a
predefined threshold:

P(Z) Le

It is noted that using differential privacy
with SL enhances privacy at the cost of
inference quality. Thus, within our
framework, this is implemented as a
tunable parameter, allowing users to
balance privacy and model performance
based on their requirements.

By leveraging Split Learning, we
effectively navigate the complexities of
data encryption within our decentralized
inference system for LLMs. This approach
preserves the confidentiality and integrity
of user data while ensuring the operational
feasibility of complex model computations,
demonstrating a sophisticated balance
between privacy preservation and
computational efficiency.

5.Use Cases

This section provides a technical
overview of key applications for Cyborg
Network, emphasizing decentralized Al
inference, model optimization, and
privacy-preserving techniques. While the
use cases

19

Lite Paper v2.0

listed here demonstrate broad industry
impact, further expansions can be
tailored based on specific enterprise
needs.

51 Al Agents

Cyborg Network provides a robust
execution layer for Al agents, enabling
them to perform real-time decision-
making, dynamic adaptation, and
autonomous coordination across multiple
domains. By leveraging distributed Al
inference, agents can process large-scale
data locally, avoiding centralized
bottlenecks. Secure model verification
ensures execution integrity, making it
ideal for self-learning systems in smart
cities, autonomous robotics, and
industrial automation.

5.2 Smart Cities

From traffic optimization to predictive
maintenance, smart city infrastructure
benefits from real-time Al inference at the
edge. Cyborg Network deploys Al models
across public spaces and municipal 0T
networks, reducing latency and cloud
dependency. Privacy-preserving
computation ensures that sensitive urban
data remains secure while allowing
federated intelligence across city nodes.

5.3 Autonomous Mobility

Autonomous vehicles (AVs) require low-
latency perception models for navigation,
object detection, and real-time decision-
making. Cyborg Network enables
decentralized inference, allowing AVs to
process local sensor data while offloading
complex computations to nearby nodes.
Optimized model execution through
pruning and quantization ensures faster
response times and reduced power

consumption.

5.4 Industrial loT

Al-driven predictive maintenance,
anomaly detection, and process
automation demand efficient inference

on-site, eliminating the need for constant
cloud connectivity. Cyborg Network
facilitates secure split learning, allowing
manufacturers to process proprietary
data locally while benefiting from
distributed intelligence across multiple
production lines.

5.5 Public Safety & Surveillonce

Al-powered surveillance systems rely on
real-time video analytics for anomaly
detection, facial recognition, and threat
identification. Cyborg Network enables
distributed inference across edge nodes,
reducing bandwidth consumption and
improving response times. The Finality-
Based Verification mechanism ensures
that Al-generated alerts remain tamper-
proof, while differential privacy
safeguards sensitive biometric data.

5.6 Wedadrables & Personal Al

Wearable devices generate continuous
biometric and behavioral data that require
low-latency, on-device Al processing.
Cyborg Network supports context-aware
Al assistants, gesture recognition, and
personalized health monitoring, ensuring
that private user data remains encrypted
while still benefiting from cloud-
augmented intelligence.

5.7 Medical Al

Decentralized Al inference enhances
medical imaging, disease prediction, and

20

Lite Paper v2.0

real-time patient monitoring while
complying with healthcare privacy
regulations. Hospitals can execute Al

models on-premises without exposing
patient data to external cloud servers.
Fully Homomorphic Encryption (FHE) and
ZK verification ensure both privacy and
execution integrity, facilitating secure Al-
driven diagnostics and research.

5.8 Agriculture & Precision
Farming

Cyborg Network enables Al-driven
automation in agriculture, optimizing crop
yield prediction, pest detection, and
autonomous farming machinery.
Distributed inference ensures low-latency
decision-making even in remote areas,

while model compression techniques
enable Al execution on resource-
constrained loT devices.

5.9 Decentralized Cloud
Services

Beyond industry-specific applications,
Cyborg Network serves as a foundation
for decentralized cloud computing,
allowing enterprises to deploy Al

workloads dynamically without relying on
centralized cloud providers. Developers
can optimize for cost, performance, and
security, while maintaining full ownership
of their models and data.

Conclusion:

The Cyborg Network is poised to
transform the landscape of edge
computing by delivering a robust,
decentralized, and transparent platform
that caters to a wide range of industries
and applications. Through real-time data
processing and analysis, we're committed
to providing unparalleled data privacy

and security to meet the growing demand
for efficient and low-latency solutions in
an increasingly connected world. By
leveraging the power of blockchain
technology, the Cyborg Network goes
beyond traditional cloud computing and
data centers, nurturing an ecosystem of
edge server providers, developers, and
end-users. Our platform encourages
participation and collaboration, making
decentralized edge computing accessible
and affordable for everyone.

In conclusion, the Cyborg Network is an
ambitious vision, not just a project. Join
us to transform data processing,
transmission, and protection, and create
a more connected, secure, and efficient
world.

21

