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Each AI miner participates in the 
computational process while embedding a 
ZKML-enabled certification module, 
ensuring verifiable proof of execution 
without exposing model parameters or 
inference data. This cryptographic 
attestation mechanism mitigates 
adversarial modifications in the inference 
pipeline and guarantees deterministic 
correctness in model outputs. 



The protocol enables low-latency, 
hyperlocal AI inference infrastructure at a 
global scale, optimized for real-time AI 
systems such as humanoids, autonomous 
robotics, and mission-critical cyber-
physical systems. By leveraging provably 
secure computation and distributed 
orchestration, CYBORG aims to establish a 

We present a formal specification of the 
Cryptographically Yielded Blockchain-
Orchestrated Resource Grid (CYBORG) 
chain, a decentralized AI inference protocol 
that integrates a Substrate-based runtime 
with multiple interoperable local peer-to-
peer AI inference networks. Each network 
comprises heterogeneous AI-compatible 
hardware, optimized for domain-specific 
machine learning applications and 
orchestrated via a blockchain-backed 
consensus mechanism.



CYBORG, built on Polkadot, establishes a 
distributed AI execution environment 
where inference workloads are partitioned 
and executed across a network of 
embedded accelerators.
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fault-tolerant, trustless AI execution 
framework that ensures scalability, privacy, 
and economic viability for next-generation 
machine intelligence



Cyborg is built with  in mind, 
fostering AI adoption through a 
decentralized, cost-efficient, and privacy-
preserving inference network that supports 
the infrastructure demands of an AI-driven 
future.



Introduction



1.1 Nomenclature



In this paper, we introduce Cyborg 
Network, a decentralized, blockchain-
governed AI inference protocol designed 
to orchestrate globally distributed AI 
processing nodes. Cyborg Network 
leverages a  hybrid incentive model, 
integrating both cryptographic rewards and 
fiat-based incentives, to drive enterprise 
adoption while ensuring regulatory 
compliance.



The term CYBORG originates from its 
underlying architectural principle: 
Cryptographically Yielded Blockchain-
Orchestrated Resource Grid. This 
nomenclature reflects its core design—a 
decentralized system where AI workloads 
are securely allocated, executed, and 
verified across a distributed network of 
inference nodes.



An early conceptual version of Cyborg 
Network was first outlined in research 
discussions on off-cloud AI inference 
scalability, addressing the challenges of 
cost-efficiency, data sovereignty, and fault 
tolerance. Unlike conventional cloud-based 
AI execution models, Cyborg Network 
proposes a globally scalable, trustless


 Vision 2030

 AI infrastructure that ensures deterministic 
AI processing with cryptographic 
attestation



1.2 Driving Factors



A decentralized AI inference network 
must be fault-tolerant, 
cryptographically verifiable, and 
economically sustainable. Traditional 
cloud-based inference pipelines suffer 
from latency constraints, cost 
inefficiencies, and opaque execution 
environments, making them unsuitable 
for AI systems requiring real-time, 
deterministic, and privacy-preserving 
computation. Cyborg Network 
introduces a blockchain-governed, 
hyperlocal AI execution layer, 
eliminating single points of failure and 
ensuring inference workloads remain 
provably correct, accessible, and 
censorship-resistant.



Bitcoin demonstrated the viability of 
decentralized economic coordination, 
ensuring immutable and censorship-
resistant transactions. Ethereum 
expanded this model with Turing-
complete smart contracts, unlocking 
programmable economic mechanisms 
but still constrained by execution costs 
and state coherency limitations. 
Polkadot further evolved the paradigm 
by enabling specialized, interoperable 
blockchains, optimizing both scalability 
and cross-network composability. 
Cyborg Network builds on this 
foundation, integrating zero-knowledge 
attestations, decentralized scheduling, 
and a hybrid incentive model to enable 
distributed, privacy-preserving AI 
inference at scale.


https://www.vision2030.gov.sa/en
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The architecture is governed by five core 
principles:



1.	Resilience – Byzantine-resistant 
execution with no reliance on centralized 
entities.



2.	Verifiability – ZKML-powered proof 
generation for deterministic and tamper-
proof inference validation.



3.	Scalability – Adaptive inference 
placement across geographically 
distributed AI accelerators, optimizing for 
latency and efficiency.



4.	Economic Alignment – A hybrid 
incentive model, combining crypto-
economic staking mechanisms with fiat-
based enterprise adoption pathways.



5.	State Coherency – Efficient cross-node 
synchronization, ensuring computational 
consistency across dynamic workloads.



Cyborg Network enforces deterministic 
execution guarantees while ensuring AI 
models operate with cryptographic 
integrity, low-latency response times, and 
regulatory-compliant data sovereignty. By 
extending Polkadot’s principles of 
scalability, interoperability, and economic 
flexibility, it establishes a globally 
distributed, blockchain-secured AI 
processing framework, advancing 
decentralized inference beyond traditional 
paradigms.



1.3  Fundamentals



This section covers the core principles that 
underpin the design and functionality of 
our system, providing the necessary 
technical background for understanding its 
implementation.

1.3.1 Neural Networks



Neural Networks, structured as 
interconnected layers of artificial neurons, 
execute mathematical operations on input 
data through computational units known as 
operators. The connectivity of these layers 
is governed by weighted edges, which are 
iteratively adjusted during training, allowing 
the model to learn. These weights, or 
parameters, directly influence the 
computational and memory demands of 
inference.



As neural networks scale in complexity, so 
do the computational requirements and 
memory footprint necessary for both 
training and inference. Increased depth, 
neuron count, and architectural 
sophistication introduce an exponential rise 
in mathematical operations. Each 
operation demands storage and 
processing, creating bottlenecks on 
resource-constrained devices.



Inference in Deep Neural Networks (DNNs) 
involves propagating input data through 
successive layers to generate an output. 
Two primary constraints impact this 
process:



	1.	Memory footprint – The storage required 
for model parameters and intermediate 
activations.



	2.	Computational intensity – The Giga 
Operations Per Second (GOPS) needed 
for execution.



A device with inadequate memory cannot 
store the entire model, rendering inference 
infeasible. Similarly, limited computational 
throughput may introduce excessive 
latency, making real-time AI processing 
impractical on lower-powered hardware.
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To address this, we frame the core problem 
as: How can large-scale AI inference be 
performed on hardware-limited devices? In 
practical terms, how can AI applications 
leverage high-capacity models without 
being constrained by local computational 
limits?



By abstracting DNNs as computational 
graphs, where data (tensors) flows 
between operators, we can decompose 
inference into distributed workloads. 
Tensors, which represent multi-dimensional 
data structures, are categorized into:



•	Input tensors (X) – External inputs or 
static parameters.

•	Activation tensors (Y) – Intermediate or 
final outputs generated by operators.



In the context of Cyborg Network, we 
delegate tasks to a localized cluster of 
custom AI accelerators that aggregate the 
processing as a unified network by 
combining  individual differential neural 
layers processed at different machines 
within the same virtual network.



1.3.2   Edge Computing
 

Edge computing departs from traditional 
cloud-based architectures by executing 
computation closer to the data source, 
reducing latency and optimizing resource 
utilization. Unlike cloud models, edge 
computing distributes computational tasks 
across intermediate nodes such as 
cloudlets, micro data centers, or dedicated 
inference hardware, minimizing data 
transmission overhead.

Shi et al. [4]–[6] define edge computing as 
a network edge execution paradigm where 
downlink data corresponds to cloud 
services, and uplink data represents the 
Internet of Everything (IoE). 

Satyanarayanan [8] describes it as a model 
that deploys computing and storage 
resources closer to mobile devices and 
sensors to reduce latency. Zha et al. [9] 
extend this definition by emphasizing 
resource unification across geographically 
and network-proximate nodes, enabling 
distributed compute, storage, and 
networking for application services.

In an edge computing framework, 
workloads are offloaded from cloud 
infrastructure to edge nodes, leveraging 
localized compute resources to process 
data in real time. This approach enhances 
network efficiency, reduces reliance on 
cloud data centers, and supports low-
latency, high-bandwidth applications. The 
architecture integrates compute, storage, 
and networking capabilities at the edge, 
addressing key industry requirements such 
as real-time processing, application 
intelligence, security, and privacy 
preservation [10].

Edge computing is widely adopted in 
scenarios demanding high-throughput, 
low-latency execution, particularly in AI-
driven workloads, industrial automation, 
and IoT applications. Research continues to 
advance edge-native architectures, 
optimizing distributed execution models 
for fault tolerance, workload scheduling, 
and secure data processing [10]–[14].



1.3.3 Zero-Knowledge Machine 
Learning (ZKML) in Decentralized 
Inference



The increasing opacity of proprietary 
machine learning (ML) models has created 
fundamental challenges in model 
transparency, bias auditing, and result 
reproducibility. While open-source model 
architectures and weights have traditionally 
enabled scientific reproducibility and 
external validation, the commercialization
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 of foundation models—along with safety 
concerns over unrestricted access—has 
driven the industry towards closed-source 
deployments. This shift significantly 
impairs external verification, raising two 
major concerns: 

1.	Unverifiable Performance Claims – Model 
providers can assert benchmark superiority 
without independent validation, leading to 
skepticism about reported accuracy, 
robustness, and efficiency.



2.	Unintended Bias and Opaque Decision-
Making – Proprietary models prevent third-
party auditing for algorithmic fairness, 
limiting the ability to detect and mitigate 
systemic biases in real-world deployments.

Algorithmic audits and API-based 
evaluations offer partial solutions but 
remain impractical for high-risk ML 
applications without public interfaces—
such as law enforcement predictive 
models, financial risk assessments, and 
internal enterprise AI systems. These 
limitations necessitate cryptographic 
mechanisms that allow external validation 
without exposing proprietary model 
weights or sensitive inference data.



1.3.4 Verifiable AI Inference via ZKML



Zero-Knowledge Machine Learning 
(ZKML) enables proof-based verification 
of model execution, ensuring that an AI 
system adheres to declared performance 
characteristics without revealing its internal 
workings. Using succinct Zero-Knowledge 
Proofs (ZKPs), an ML provider can 
generate cryptographic attestations that 
verify�

� The model executed correctly on a 
given input without tampering�

� The inference result adheres to 
documented performance standards 
(e.g., accuracy, fairness constraints).

� The same model architecture and 
parameters persist across different 
inference instances, preventing silent 
model degradation over time.



1.3.5 Integrating ZKML in 
Decentralized AI Architectures



To enforce verifiable AI execution across 
decentralized AI infrastructure, we 
implement a hybrid ZKML framework that�
�� Generates Zero-Knowledge Proofs for 

Model Execution – Ensuring integrity 
and correctness of inference results, 
even on untrusted nodes�

�� Enables Selective Disclosure for Model 
Auditing – Providing cryptographic 
evidence of fairness and safety without 
exposing proprietary model internals�

�� Ensures On-Chain Verifiability – 
Embedding ZKML proofs into 
blockchain-based decentralized 
inference systems for persistent, 
tamper-proof validation.

We shouldn’t just trust the claims of AI model providers

Why?

Impossible to know if a 
provider switches out or 
changes the model it’s 
using at inference

There are cost and 
efficiency reasons for 
model providers to use 
cheaper or worse models

High-risk applications 
require verifiably consistent 
models that are aligned and 
properly evaluated

Create a Verifiable Evaluation Attestation for a model

Step 1

A trained model is 
evaluated on benchmark 
data by the developer

Zero-knowledge proofs 
of valid inference are 
generated

These proofs are packaged 
and shared as a verifiable 
evaluation attestation

Check that model inference is correctly and honestly performed

Step 2

A new proof of model 
inference is generated for 
this user

Checks if this proof 
matches the model weights 
hash published earlier

The closed-source model 
is deployed to a future 
user by a provider
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1.4 Trustless AI Execution in 
Distributed Inference Networks



As AI inference systems become 
increasingly integrated into critical domains 
such as healthcare, finance, and security, 
the need for verifiable execution 
mechanisms grows in importance. 
Traditional inference pipelines rely on 
centralized control and opaque verification 
processes, limiting trust in model outputs. 
In decentralized environments, where 
multiple nodes participate in inference 
computation, ensuring the integrity and 
privacy of AI execution becomes a complex 
challenge.



1.4.1 Security and Privacy in 
Distributed AI Inference



In high-stakes inference scenarios, 
cryptographic proof mechanisms are 
required to guarantee correctness while 
preserving confidentiality. A primary 
challenge arises when inference nodes 
operate outside a trusted execution 
environment, introducing risks such as:



	•	Result Tampering – Malicious or faulty 
nodes may return manipulated outputs.



	•	Unverifiable Execution – Model 
computations occur as a “black box,” 
preventing external validation.



	•	Data Privacy Leakage – Sensitive input 
data may be exposed to untrusted 
compute nodes.



To mitigate these risks, Zero-Knowledge 
Proof (ZKP) systems provide a framework 
for verifiable yet privacy-preserving 
inference execution. By leveraging succinct 
proofs, inference nodes can 
cryptographically demonstrate that 

computations were executed correctly 
without revealing model internals or input 
data.



1.4.2 Zero-Knowledge Verification for 
Model Integrity



Decentralized inference introduces unique 
security threats, as individual nodes may 
behave dishonestly, affecting aggregated 
outputs. To address this, Zero-Knowledge 
Proof-based attestation mechanisms 
enable:

	•	Proof of Correct Execution – Each node 
generates a ZKP confirming that its 
assigned model computations were 
performed as expected.



	•	Selective Disclosure for Auditing – 
Cryptographic attestations allow external 
verification of inference correctness 
without exposing proprietary model 
architectures.



	•	Tamper-Proof Verification – On-chain 
integration of proofs ensures that any 
deviation from declared performance 
constraints is detectable.



These verification mechanisms provide a 
cryptographic assurance layer, ensuring 
that AI inference outputs remain 
trustworthy even in untrusted or 
adversarial environments.



1.5 Scalability Challenges in Secure 
Inference



Despite the advantages of cryptographic 
verification, Zero-Knowledge Machine 
Learning (ZKML) remains computationally 
expensive. Existing ZKP-based verification 
methods introduce substantial latency, with 
some proof-generation processes taking 
several minutes per token in large-scale
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language models. This computational 
overhead conflicts with the real-time 
performance demands of AI applications, 
necessitating further optimizations in:



•	Proof Generation Speed – Reducing the 
computational cost of generating verifiable 
inferences.



	•	Efficient Proof Aggregation – Enabling 
multiple inference nodes to contribute 
proofs collectively, rather than verifying 
each result in isolation.



	•	Hybrid Off-Chain and On-Chain 
Validation – Balancing security and 
efficiency by performing proof generation 
off-chain while committing essential 
verification data on-chain.



Addressing these challenges is critical for 
the practical deployment of verifiable 
inference across distributed AI networks, 
ensuring that trustless execution does not 
compromise efficiency.



2.  ZK Verification Process



This section explores the application of 
Zero-Knowledge (ZK) techniques in 
verifying AI inference integrity. It details 
how models are decomposed, computed 
across distributed nodes, and securely 
validated without exposing sensitive data



2.1.1 Model Decomposition and 
Verification.



 A fundamental aspect of decentralized AI 
inference is the division of models into 
multiple computational components, each 
processed by separate computing nodes. 
These nodes execute their assigned 
operations and forward results to a central 
verifier. For example, a foundation model

like LLaMA-3 [11] can be decomposed 
layer-wise, where each node sequentially 
processes specific layers, or width-wise, 
enabling parallel execution. The choice of 
decomposition strategy depends on 
application-specific requirements, and our 
approach supports both.



To ensure correctness and integrity in this 
setting, Zero-Knowledge Proofs (ZKPs) 
enable verification without exposing 
proprietary model weights. Each 
computing node (prover) generates a 
proof of correct inference execution, which 
the central server (verifier) validates 
without accessing the model’s internal 
parameters. This prevents adversarial 
inference attacks while maintaining privacy.



2.1.2 Commitment and Proof 
Generation. 



Each node commits to its assigned model 
fragment and computation results using 
cryptographic commitments. The proof 
generation process follows three steps:



1.	Commitment: The prover commits to its 
model fragment, ensuring its integrity while 
keeping the weights hidden. This is 
achieved using generalized Pedersen 
commitments over an elliptic curve group 
G, formulated as [12]:







2.	Proof Generation: The prover executes 
inference and produces a proof 
demonstrating correct computation under 
a finite field F, ensuring that operations—
including matrix multiplications, activation 
functions, and token transformations—are 
faithfully executed


(1)
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3.	Verification: The central server verifies 
the proof, ensuring that the model 
decomposition is correctly followed and 
computations are consistent with expected 
outputs. This validation can be performed 
interactively or non-interactively using 
protocols such as  for 
arithmetic operations and bit 
decomposition or lookup tables for non-
arithmetic functions.



Sum-Check

Mathematically, let f:        represent the 
transformation performed at a given layer 
of a foundation model, where the prover 
computes y = f(x, w) for some private 
model parameters w. The verifier must 
confirm that y is computed correctly 
without learning w. This is achieved through 
a ZKP of correct execution.



2.1.3 Verification of Model Execution



Each prover commits to the computation  
and provides a proof of correctness. The 
verification process ensures:

Figure 1: Zero-knowledge proof of circuit 10 = (w1 + 
w2)(w2 + 1) between a prover (P) and a verifier (V). 
Hereby, the goal of the prover is to prove to the 
verifier that P knows a w1 and w2 such that the 
claimed result “10” is indeed calculated by the 
equation (w1 +w2)(w2 + 1) (which is denoted by a 
circuit). The witness w1 = 4 and w2 = 1 are the secret 
of the prover. Zero-knowledge proof consists of a 
commitment process (denoted by the safe box) in 
the beginning, followed by several back-and-forth 
challenge and response processes between P and V 
in the interactive scenario. In the non-interactive 
scenario, the prover can challenge him or herself by 
the Fiat-Shamir heuristic [13] and the verifier only 
needs to verify the last response from the prover.

	1.	The claimed inference follows the 
expected model structure.



	2.	The computations remain within the 
expected finite field constraints.



	3.	The proof remains efficient, avoiding 
excessive computational overhead.



Since neural networks contain both 
arithmetic (e.g., matrix multiplications) and 
non-arithmetic (e.g., activation functions, 
token transformations) operations, 
verification requires encoding both types 
within the proof system.



2.1.4 Encoding Non-Arithmetic 
Operations in Zero-Knowledge Proofs



A fundamental challenge in verifying neural 
network execution lies in non-arithmetic 
operations such as activation functions. 
Two primary techniques are employed:

1. Bit Decomposition for Activation 
Functions

Consider the ReLU activation function [14]:


(2)

where     is the Hadamard product, abs (Z) 
is the element-wise absolute value, and

(3)

10

1w1 w2

Witness

w1 = 4 w2 = 1...
Top Secret

challenger

challenger

response

response

P V

w1, w2

Zero-knowledge
V can’t know

the witness

Soundness
if the circuit is invalid,

the verifier rejects

Completeness
if the circuit is valid,

the verifier accepts

Poly g
Top Secret

Witness

P V

g
Open: Allow V to evaluate g

at a random vector (r1,...,rv)

if H = g1(0) + g1(1)

if g1(r1) = g2(0) + g2(1)

if g2(r2) = g2(0) + g3(1)

if gv(rv) matches commitment

https://people.cs.georgetown.edu/jthaler/sumcheck.pdf
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To prove correct execution of f, the prover 
must show that its computed output Y 
matches a valid table entry. This is 
formulated as a subset argument:

Using the Sum-Check protocol, subset 
verification reduces to proving that the 
following polynomial identities hold:

By taking the logarithmic derivative, we 
derive the final rational function identity:

(9)

(10)

(11)

We denote the binary representation of z 
as                      ,  where                   (e.g., 128 or 
256 in a finite field of order p). The bit 
decomposition must satisfy:

Using the  the 
correctness proof can be merged into a 
single Sum-Check equation:

Schwartz-Zippel Lemma,

2.1.5 Lookup Table Verification for 
Non-Arithmetic Computations



For operations such as , which are 
computationally expensive in a ZKP 
setting, we use a lookup table approach. 
Let T be a shared table containing valid 
input-output pairs for a non-arithmetic 
operation f, structured as:

 Softmax

where           is a randomly chosen field

element to ensure probabilistic soundness.

To verify ReLU execution in zero-
knowledge, we enforce reconstruction 
constraints:

(4)

(5)

(6)

(7)

(8)

The prover commits to                   , and this 
can be verified efficiently in zero-
knowledge using the Sum-Check protocol.

The  (1) satisfies the 
binding property: once sent to the verifier, 
the opening information ( r, S) cannot be 
changed by the prover. At first glance, 
proving the ability to "open" the 
commitment may seem to require 
revealing the witness s to the verifier, 
potentially violating the zero-knowledge 
property. However, this concern is 
mitigated due to the homomorphic 
property of the Pedersen commitment. 
Specifically, given two commitments 
Commit (S1, r1)  and  (S2, r2)  corresponding 
to tensors S1 and S2, we have:

Pedersen commitment

which results in the commitment of (S1 + 
S2).

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Commitment_scheme
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This property enables the prover to 
demonstrate knowledge of S without 
disclosing it by committing instead to a 
linear transformation:

where D  is a d-dimensional hiding vector 
chosen by the prover, and e is a random 
scalar challenge sampled by the verifier. 
The vector D ensures S.e+D that  appears 
random to the verifier, preserving zero-
knowledge. The existence of e guarantees 
special soundness: executing the protocol 
with two different challenges e1 and e2 
leads to

Since there are 2d unknowns (  S and D ) 
and 2d equations, two valid transcripts (S, 
e1, D) and (S, e2, D) uniquely determine S 
and D through Gaussian elimination, 
achieving special soundness.

(12)

(13)

Algorithm 1: Commitment Opening 
Procedure



This algorithm enables the prover to 
convince the verifier that they know a 
witness      and a witness      that are 
openings of commitments:

such that            , where h, g are randomly 
sampled generators from an elliptic curve 
group. The algorithm is provably complete, 
exhibits zero-knowledge, and ensures 
special soundness.

Steps:

1. Publicly known generators h, g, g1, ....... , 
gd are randomly sampled from the elliptic 
curve group G.


2. The prover sends commitments:

3. The prover picks                              and 
hiding factors                                   , then sends 
commitments:

4. The verifier selects a random challenge

                                 and sends it to the prover.



5. The prover computes transformed 
values:

6. The prover sends           and    to the 
verifier. These conceal           , ensuring 
zero-knowledge.

7. The verifier computes:

8. The verifier computes                       and its 
commitment:

It then checks:

9. If both checks pass, the verifier accepts; 
otherwise, they reject.



This algorithm ensures that the prover can 
demonstrate knowledge of S and t without 
revealing them, leveraging the 
homomorphic properties of Pedersen

10
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commitments. The zero-knowledge 
property remains intact, while the protocol 
guarantees soundness under multiple 
executions.

This guarantees that Se is the unique 
multilinear polynomial over F such that 

Se(u) = S(u) for all


Using this multilinear extension, we can 
rewrite arithmetic verification as the 
verification of the sum of a multi-variable, 
low-degree polynomial g:

which simplifies verification in zero-
knowledge proof systems.

2.1.8 Sum-Check/GKR Protocol



Algorithm 2 describes the Sum-Check 
protocol (also known as the GKR protocol 
[15] )for verifying Equation (17). The 
protocol proceeds in  rounds [17]. In the 
first round, the prover sends a polynomial 
g1 (X1)  and claims:

By applying the Schwartz-Zippel Lemma 
recursively, the protocol continues until the 

final round, where all    claims can be 
verified with high probability (failure 
probability at most d/|F|, where d is the

If this claim holds, then H=g1(0) + g1(1) . To 
validate, the verifier randomly samples       
r1 ~ F and requests proof that:


In the second round, the prover sends 
g2(X2) and claims:

2.1.7 Proofs for Arithmetic Operations



Multilinear Extension



Zero-knowledge proofs primarily operate 
within a finite field F, rather than the real 
field R used in floating-point calculations. 
Arithmetic operations in this setting consist 
of addition and multiplication, which can be 
efficiently verified using the Sum-Check 
protocol, particularly the GKR protocol [15, 
16]. The key idea in the Sum-Check 
protocol is to express a d-dimensional 
tensor              as a multi-variable polynomial
          via a transformation known as 
multilinear extension [18]:

(14)

where                     represents the binary 
index of tensor S, and                                   is 
the unique Lagrange interpolation 
polynomial:

which satisfies the interpolation property:

(17)

(18a)

(18b)

(18c)

11

(16)

(15)
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polynomial degree). The final claim gv(rv) = 
g(r1, r2, ........., rv) can be verified via the 
commitment opening. The Sum-Check 
protocol ensures completeness through its 
structured proof construction. Soundness 
follows from recursive applications of the 
Schwartz-Zippel Lemma, while zero-
knowledge properties are guaranteed by 
the Pedersen commitment scheme.



2.1.9 Reducing Linear Layers to Sum-
Check Protocol                         

Linear layers are fundamental components 
of foundation models and can be 
mathematically represented as matrix 
multiplications. Given matrices                

such that C=AB, we define functions:

(19)

Where                  and                  represent 

binary indices of i and j, respectively. The 

multilinear extensions        of these 

functions satisfy:

Since Equation (20) conforms to the form 
of Equation (17), we can apply the Sum-
Check protocol to verify the correctness of 
linear layers. Specifically, we define a 
degree-2 polynomial



and verify


at a random evaluation point . 



This enables the efficient verification of 
matrix multiplications within zero-
knowledge proof systems.

3. System Design & Operation



This section provides an in-depth look into 
the structure and functionality of Cyborg 
Network. We detail how our network 
topology, architecture, and workflow 
enable AI inference at the edge. 
Additionally, we explore the role of miners 
in contributing computational power and 
the Cyborg Connect application that allows 
users to deploy, manage, and monitor AI 
workloads efficiently.



3.1 Network Topology                          

The Network consists of multiple 
interdependent components, each 
facilitating different aspects of AI inference 
execution and verification. These 
components include the blockchain, miner, 
Cyborg Connect (frontend), Oracle 
Feeder, Cyborg Proxy, and Storage Nodes, 
as illustrated in Diagram 2.

3.1.1 Worker Nodes and Execution 
Layer



Miners within the network function as 
worker nodes, a blockchain-native node 
definition specific to Cyborg. These nodes 
are non-consensus participants, operating 
independently of the blockchain’s 
validation layer. Upon joining the network, a 
worker node remains in an idle state until 
assigned an AI model for inference by the 
runtime. Task assignment follows a 

12
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deterministic scheduling mechanism that 
factors in node availability, compute 
capacity, and latency constraints.



Once inference execution begins, the 
miner generates periodic resource 
consumption reports, logging memory, 
compute cycles, and power usage. These 
reports are relayed to the blockchain to 
maintain an immutable record of execution 
costs. In parallel, the miner generates 
ZKML proofs, which serve as cryptographic 
attestations of the model’s output, 
ensuring computational integrity. The 
blockchain verifies these proofs to validate 
inference correctness without exposing the 
underlying model weights or input data.



3.1.2 Storage and Model Management



AI models and associated weight files are 
stored in a distributed, cryptographically 
secured storage layer. This layer is 
implemented using CESS, a decentralized 
storage protocol optimized for high-
performance data retrieval. Models are 
encrypted before storage, and only 
authorized worker nodes can decrypt them 
upon task allocation. The storage nodes 
operate independently from inference 
nodes, ensuring a separation between 
compute and data layers.



3.1.3 User Interaction and   
Authentication



Users interact with the system via Cyborg 
Connect, a web and mobile interface for 
managing inference requests. The 
interface does not directly communicate 
with the blockchain; instead, a proxy server 
handles user authentication and dashboard 
data retrieval. Private key authentication is 
required to decrypt user-specific inference 
logs, ensuring that only authorized users

 can access their execution data.



3.1.4 Oracle Integration and Data Flow



The Oracle Feeder serves as a bridge 
between the blockchain and the off-chain 
inference network. It transmits task 
parameters, model assignments, and 
inference results between the on-chain 
scheduling logic and off-chain worker 
nodes. The oracle operates 
asynchronously, ensuring low-latency data 
propagation while maintaining message 
integrity through cryptographic signatures.



The architecture follows a modular design, 
with independent execution, storage, and 
verification layers interacting through 
cryptographically secured communication 
channels. Each component operates in a 
permissionless environment, where task 
allocation, execution verification, and cost 
settlement occur without a centralized 
coordinator.



3.2  The Miner                                  

The Cyborg miner is a purpose-built, high-
performance edge server designed as an 
AI accelerator and blockchain node. Built 
on Nvidia’s Jetson architecture, it 
integrates various hardware components 
to serve dual functions: 
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as an AI inference engine and as a fully 
operational blockchain node within the 
Cyborg Parachain ecosystem. The miner is 
equipped with 2TB of NVMe SSD storage, 
leveraging AES encryption for data-at-rest 
protection, ensuring high throughput and 
secure storage for large-scale AI models 
and datasets.



In terms of computational capability, the 
Cyborg miner is optimized for AI inference, 
capable of delivering up to 200 TOPS 
(Tera Operations Per Second). This 
performance enables the efficient 
execution of computationally intensive 
models such as deep learning inference 
tasks.



The miner operates strictly within the 
Cyborg blockchain network. It is pre-
configured to function as a worker node in 
the blockchain, which ensures that all 
operations, including AI model assignments 
and task execution, are orchestrated 
through the Cyborg Connect platform. 
Communication with the miner is mediated 
via the blockchain’s runtime environment, 
meaning the miner is not directly controlled 
by external commands but rather by on-
chain instructions, enhancing security and 
consistency.



Geo-tagging of the miners ensures precise 
location tracking for optimal model 
deployment. This feature allows users to 
deploy models on miners located in 
specific geographic areas, improving 
inference performance by reducing latency 
and increasing computational efficiency.



The Cyborg miner is designed to be Zero-
Knowledge (ZK) ready, supporting Zero-
Knowledge Proof (ZKP) mechanisms. This 
feature facilitates privacy-preserving 
computations and secure validation of AI

model outputs without disclosing sensitive 
data. The ZK architecture is fully integrated 
into the miner’s execution pipeline, 
enabling the secure execution of models 
while maintaining confidentiality and 
integrity, particularly in scenarios requiring 
proof of correctness without exposing the 
underlying model or input data.



The Cyborg miners will be exclusively 
manufactured and distributed globally by 
our organization, ensuring consistent 
quality control and supply chain 
management. These miners will be made 
available for purchase directly to the public, 
with full technical support and integration 
capabilities. Additionally, we will establish a 
dedicated Customer Success team, 
composed of experts in both AI and 
blockchain technologies, to assist users 
with any inquiries or technical challenges 
they may encounter. The team will provide 
support for deployment, configuration, 
troubleshooting, and optimal usage of the 
Cyborg miner within the broader 
ecosystem, ensuring a seamless user 
experience.



3.3  Cyborg Connect

                                
Cyborg Connect is a web and mobile-
native software platform designed to 
deploy pre-trained AI models across 
globally distributed AI miners.

Protocol:

CPU:

Memory:

eMMC:

OS:

Location:

NVIDIA Ampere GPU

Cortex-A78AE

32 GB

64GB eMMC 5.1

Ubuntu 22.04 LTS

Pardo, 28049 Madrid, Spain

Server Specifications

/opt/cyber/go-cyber/go-cyber config


/opt/cyber/go-cyber/node2


"CENT_SECRET" 


http://10.10.99.2:8000 



      /                    

        /                     

--dataDir=

--centSecret=

--centUrl=

1

1

NAME                          READY                  STATUS

coredns-569fd64d84-5q5pj

node-controller-hx4xd 

1 

1

Running


Running


...


Logs

Nvidia Jetson
Cyber Lite

CPU Usage

View Details

85%

RAM Usage

View Details

40%

Disk 
Usage

View Details

75%

256 GB

128 GB

64 GB

RAM Usage

Free 1.2 GB

24-11-2022  06:27:00

1 hour

Dashboard
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Built on the Cyborg blockchain, the 
platform leverages its secure and 
transparent architecture while integrating 
key API-backed services:



	•	Payment Gateways – Supports seamless 
transactions in fiat and cryptocurrency, 
offering pay-per-use and subscription 
options.



	•	KYC & Compliance – Implements KYC/
AML checks via Sumsub to ensure 
regulatory compliance while maintaining 
privacy.



	•	Resource Optimization – Dynamically 
allocates workloads based on 
performance, availability, and cost 
efficiency.



	•	Model & Data Security – Ensures secure 
model deployment with CESS-encrypted 
storage and privacy-preserving techniques 
like homomorphic encryption and split 
learning.



	•	Real-time Monitoring & Analytics – 
Provides insights into AI workload 
performance, miner uptime, and 
operational efficiency through an intuitive 
dashboard.



Deployment Process



	1.	The user submits a task via Cyborg 
Connect.



	2.	The app generates an ephemeral 
keypair and uses a Diffie-Hellman 
exchange with the worker’s public key to 
establish an encryption key for CESS.



	3.	The ephemeral public key and model file 
ID are recorded on the Cyborg Parachain.

4.	Miners monitor the parachain for task 
assignments.



	5.	Using the Diffie-Hellman secret, the 
miner downloads and decrypts the model 
(compilation may also be required).



	6.	The miner submits an attestation report 
confirming its execution state.



	7.	The Cyborg Parachain validates the 
attestation report.



	8.	The miner exposes endpoints for real-
time monitoring via Cyborg Agent and 
inference result retrieval.



	9.	The user decrypts the results using their 
Diffie-Hellman key.



4. Scalability and Security in AI 
Workloads



Efficient AI deployment in a decentralized 
infrastructure requires advanced 
techniques to balance computational 
efficiency, security, and privacy. This 
section explores key optimizations such as 
model compression and sharding for 
resource-constrained environments, along 
with privacy-preserving mechanisms like 
secure multi-party computation (MPC) 
and homomorphic encryption. Additionally, 
we detail security protocols that ensure 
model integrity, prevent adversarial 
interference, and maintain confidentiality 
within AI execution environments.  

4.1  Model Compression



Deploying machine learning models in 
production introduces constraints that are 
often overlooked during prototyping. In 
real-world applications, models must 
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handle high request loads while maintaining 
low latency and high throughput.



	•	Latency: The time taken to generate a 
prediction after receiving an input.



	•	Throughput: The number of inference 
requests a system can process per unit 
time.



Optimizing for these factors requires 
accelerating model inference while 
minimizing resource consumption. Model 
compression techniques achieve this by 
reducing model size and computational 
complexity, often leading to significant 
speedups. While compression primarily 
targets memory efficiency, it also 
enhances inference performance, blurring 
the distinction between compression and 
optimization. The following sections 
explore key strategies for improving model 
efficiency.



4.1.1 Low Rank Factorization              

Low-rank factorization is a structured 
model compression technique that 
decomposes weight matrices in neural 
networks into lower-rank approximations, 
reducing both computational complexity 
and memory footprint. Given a weight 
matrix , the goal is to approximate it as the 
product of two smaller matrices:




This decomposition constrains the 
network’s representational capacity while 
preserving critical information, leading to 
reduced inference latency and lower 
memory usage.



In convolutional neural networks (CNNs), a 
practical case of low-rank decomposition 
involves factorizing 3×3 convolutions into

1×1 convolutions, as seen in SqueezeNet, 
effectively reducing parameter count and 
computational overhead.

In large language models (LLMs), low-rank 
adaptation (LoRA) [18] applies a similar 
principle to fine-tuning. Instead of 
updating the full parameter set of a pre-
trained model, LoRA introduces low-rank 
matrices A and B into specific layers, 
allowing efficient adaptation to new tasks 
with minimal additional parameters. By 
freezing the original model weights and 
optimizing only the low-rank matrices, 
LoRA significantly reduces the 
computational burden of fine-tuning while 
maintaining expressivity.



4.1.2  Pruning



Pruning is a model compression technique 
that reduces the size and computational 
complexity of neural networks by 
eliminating redundant or low-importance 
parameters. Originally introduced in 
decision trees to mitigate overfitting by 
removing unnecessary branches, pruning 
has since been extended to neural 
networks, where it involves removing 
weights (edges) or entire neurons (nodes).



Pruning strategies fall into two main 
categories:



	•	Structured Pruning: Entire neurons, 
channels, or layers are removed, leading to 
a direct reduction in the model’s size and 
computational cost. The resulting weight 
matrices shrink, improving both inference 
speed and memory efficiency.



	•	Unstructured Pruning: Individual 
connections (edges) are removed, 
creating sparse weight matrices. While this 
does not reduce the model’s nominal size, 
it enables specialized sparse matrix
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optimizations for efficient storage and 
computation.



Mathematically, given a weight matrix W, 
pruning applies a mask M such that:




Where    represents the Hadamard product, 
and M determines which parameters are 
retained (1) or pruned (0).



The challenge lies in determining which 
weights to prune while minimizing accuracy 
degradation. Several approaches exist, 
including magnitude-based pruning 
(removing low-magnitude weights) and 
more advanced techniques such as 
Optimal Brain Damage (OBD) and Optimal 
Brain Surgeon (OBS), which leverage 
second-order derivative information to 
assess weight importance.



We will employ low-rank factorization in 
Cyborg Connect to reduce computational 
overhead by decomposing large weight 
matrices into smaller, low-rank 
components. This enables efficient fine-
tuning and adaptation of pre-trained 
models with minimal resource 
consumption, optimizing performance 
across decentralized AI miners.



Similarly, pruning eliminates redundant 
parameters, reducing model size and 
memory footprint without sacrificing 
accuracy. By leveraging structured pruning 
for direct computational savings and 
unstructured pruning for memory-efficient 
sparse representations, we ensure AI 
workloads run with maximum efficiency, 
maintaining high throughput with minimal 
resource expenditure.



4.2. Secure and Privacy-Preserving 
Inference




Ensuring security and privacy in 
decentralized AI inference requires robust 
verification mechanisms and data 
protection strategies. Our approach 
balances efficiency with rigorous integrity 
checks to mitigate risks such as tampering, 
unauthorized access, and data leakage. To 
achieve this, we integrate Finality-Based 
Verification (FBV) for model integrity and 
Split Learning (SL) [19] for privacy-
preserving inference. These techniques 
enable secure execution across 
decentralized AI miners while maintaining 
high throughput and computational 
efficiency.



4.2.1 Finality Based Verification



Given the computational and scalability 
challenges associated with ZKML for 
verifying the integrity of LLMs in 
decentralized systems, we propose a 
Finality-Based Distribution Verification 
(CDV) strategy for general inference 
scenarios. This method leverages the 
collective agreement of multiple nodes to 
ensure correctness and integrity of model 
execution while preserving data privacy.



Finality-Based Verification Process



1. Redundant Execution: A subset of nodes 
{1, 2, ..., k} independently computes the 
output yi for the same input x using the 
model M with parameters θ:




2. Output Collection: The outputs {y1, y2, 
..., yk} are securely collected for evaluation, 
requiring efficient communication 
protocols to protect data integrity.



3. Consensus Determination: A consensus 
algorithm C evaluates the collected 
outputs to determine an agreed-upon
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result ycon:





The consensus is valid if it meets a 
predefined criterion, such as majority 
agreement or a more sophisticated 
statistical validation.



4. Verification and Finalization: If the 
consensus result aligns with outputs from a 
sufficiently large subset of nodes, the 
model execution is verified. Otherwise, 
discrepancies indicate potential integrity 
issues, triggering further investigation or 
corrective measures.



This Finality-Based approach ensures 
robust verification of model integrity 
across decentralized nodes, mitigating the 
impact of faulty or malicious actors.



Verification in the Context of Model 
Sharding



In decentralized AI, ML models may be 
sharded across multiple nodes to enhance 
scalability. Each node i possesses a unique 
shard Mi of the complete model M, 
necessitating a specialized approach to 
CDV for fragmented model execution.



1. Shard Redundant Execution: Each shard 
Mi of the complete model M undergoes 
redundant execution by a designated 
subset of nodes. Each node within the 
subset computes:




This redundancy enables cross-
verification, strengthening the validation 
process.



2. Redundant Output Collection and 
Verification: The outputs {yi,1, yi,2, ..., yi,m}

for each shard i are collected and evaluated 
through a shard-specific consensus 
mechanism:





The redundancy across nodes enhances 
the detection of discrepancies or faults in 
each shard



3. Shard Verification Completion: Upon 
reaching consensus for each shard i, the 
integrity of that shard’s execution is 
confirmed before proceeding to the next 
stage.



4. Model Reconstruction: Once each shard 
has been independently verified, the 
shard-specific consensus results {ycon,1, 
ycon,2, ..., ycon,k} are combined to 
reconstruct the final model output:






This comprehensive verification framework 
ensures the correctness and security of AI 
inference within decentralized 
environments while maintaining scalability 
and efficiency



4.2.2 Data Privacy Protection via Split 
Learning



Recognizing the challenges posed by 
encrypting data for use in decentralized 
inference systems, we adopt Split Learning 
(SL) as a pragmatic solution to facilitate 
secure and efficient computation on 
encrypted data. Traditional encryption 
methods such as Homomorphic 
Encryption (HE), while securing data at rest 
and in transit, render direct computation 
costly by obscuring its format and 
structure. 
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This limitation is particularly problematic for 
processing with LLMs within a 
decentralized framework, where data 
privacy cannot be compromised.



Split Learning (SL) addresses these 
concerns by partitioning the computational 
model, allowing for data to be processed in 
segments without revealing sensitive 
information. In this approach, user data is 
protected by ensuring that it is never 
directly transmitted to any nodes—only the 
data embeddings from specific layers are 
exchanged, and each node accesses only 
the embeddings of certain layers.



Consider a neural network model N, such 
as Llama 2, composed of a sequence of 32 
layers {L1 L2,.........,L32}, each with its own 
set of parameters     and       activation 
function   . The input to the network is X, 
and the output of the i-th layer, given input 
xi, can be mathematically described as:




where Wi and bi are the weight matrix and 
bias vector of the  i-th layer, respectively, 
and    is a nonlinear activation function such 
as ReLU, sigmoid, or tanh.



Assuming the model is split at layer  k, 
where the client handles layers {L1,......., Lk} 
and the server handles layers         
{Lk+1,......., L32}, the client computes the 
intermediate representation Z as follows:




This intermediate representation Z  is then 
transmitted to the server, which continues 
the computation:




The loss function L(Y, Ytrue) computes the 
error between the network output Y and 
the true labels Ytrue , and the gradient of 





the loss with respect to the model’s 
parameters is computed through 
backpropagation:






For privacy protection during the 
transmission of Z from client to server, 
differential privacy techniques may be 
applied. Defining a privacy metric P that 
quantifies information leakage from Z, a 
proof of privacy preservation can be 
demonstrated such that for any

 -differential privacy guarantee, the 
information leakage remains below a 
predefined threshold:




It is noted that using differential privacy 
with SL enhances privacy at the cost of 
inference quality. Thus, within our 
framework, this is implemented as a 
tunable parameter, allowing users to 
balance privacy and model performance 
based on their requirements.



By leveraging Split Learning, we effectively 
navigate the complexities of data 
encryption within our decentralized 
inference system for LLMs. This approach 
preserves the confidentiality and integrity 
of user data while ensuring the operational 
feasibility of complex model computations, 
demonstrating a sophisticated balance 
between privacy preservation and 
computational efficiency.



5. Use Cases



This section provides a technical overview 
of key applications for Cyborg Network, 
emphasizing decentralized AI inference, 
model optimization, and privacy-
preserving techniques. While the use cases
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listed here demonstrate broad industry 
impact, further expansions can be tailored 
based on specific enterprise needs.



5.1 AI Agents



Cyborg Network provides a robust 
execution layer for AI agents, enabling 
them to perform real-time decision-
making, dynamic adaptation, and 
autonomous coordination across multiple 
domains. By leveraging distributed AI 
inference, agents can process large-scale 
data locally, avoiding centralized 
bottlenecks. Secure model verification 
ensures execution integrity, making it ideal 
for self-learning systems in smart cities, 
autonomous robotics, and industrial 
automation.



5.2 Smart Cities



From traffic optimization to predictive 
maintenance, smart city infrastructure 
benefits from real-time AI inference at the 
edge. Cyborg Network deploys AI models 
across public spaces and municipal IoT 
networks, reducing latency and cloud 
dependency. Privacy-preserving 
computation ensures that sensitive urban 
data remains secure while allowing 
federated intelligence across city nodes.



5.3 Autonomous Mobility



Autonomous vehicles (AVs) require low-
latency perception models for navigation, 
object detection, and real-time decision-
making. Cyborg Network enables 
decentralized inference, allowing AVs to 
process local sensor data while offloading 
complex computations to nearby nodes. 
Optimized model execution through 
pruning and quantization ensures faster 
response times and reduced power







consumption.



5.4 Industrial IoT



AI-driven predictive maintenance, anomaly 
detection, and process automation 
demand efficient inference on-site, 
eliminating the need for constant cloud 
connectivity. Cyborg Network facilitates 
secure split learning, allowing 
manufacturers to process proprietary data 
locally while benefiting from distributed 
intelligence across multiple production 
lines.



5.5 Public Safety & Surveillance



AI-powered surveillance systems rely on 
real-time video analytics for anomaly 
detection, facial recognition, and threat 
identification. Cyborg Network enables 
distributed inference across edge nodes, 
reducing bandwidth consumption and 
improving response times. The Finality-
Based Verification mechanism ensures that 
AI-generated alerts remain tamper-proof, 
while differential privacy safeguards 
sensitive biometric data.



5.6 Wearables & Personal AI



Wearable devices generate continuous 
biometric and behavioral data that require 
low-latency, on-device AI processing. 
Cyborg Network supports context-aware 
AI assistants, gesture recognition, and 
personalized health monitoring, ensuring 
that private user data remains encrypted 
while still benefiting from cloud-
augmented intelligence.



5.7 Medical AI



Decentralized AI inference enhances 
medical imaging, disease prediction, and
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real-time patient monitoring while 
complying with healthcare privacy 
regulations. Hospitals can execute AI 
models on-premises without exposing 
patient data to external cloud servers. Fully 
Homomorphic Encryption (FHE) and ZK 
verification ensure both privacy and 
execution integrity, facilitating secure AI-
driven diagnostics and research.



5.8 Agriculture & Precision Farming



Cyborg Network enables AI-driven 
automation in agriculture, optimizing crop 
yield prediction, pest detection, and 
autonomous farming machinery. 
Distributed inference ensures low-latency 
decision-making even in remote areas, 
while model compression techniques 
enable AI execution on resource-
constrained IoT devices.



5.9 Decentralized Cloud Services



Beyond industry-specific applications, 
Cyborg Network serves as a foundation for 
decentralized cloud computing, allowing 
enterprises to deploy AI workloads 
dynamically without relying on centralized 
cloud providers. Developers can optimize 
for cost, performance, and security, while 
maintaining full ownership of their models 
and data.



Conclusion:



The Cyborg Network is poised to 
transform the landscape of edge 
computing by delivering a robust, 
decentralized, and transparent platform 
that caters to a wide range of industries 
and applications. Through real-time data 
processing and analysis, we're committed 
to providing unparalleled data privacy and 
security to meet the growing demand for

efficient and low-latency solutions in an 
increasingly connected world. By 
leveraging the power of blockchain 
technology, the Cyborg Network goes 
beyond traditional cloud computing and 
data centers, nurturing an ecosystem of 
edge server providers, developers, and 
end-users. Our platform encourages 
participation and collaboration, making 
decentralized edge computing accessible 
and affordable for everyone.



In conclusion, the Cyborg Network is an 
ambitious vision, not just a project. Join us 
to transform data processing, transmission, 
and protection, and create a more 
connected, secure, and efficient world.
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