
Cyborg Network

Verifiable AI inference at scale

Lite Paper v2.0

Barath Kanna Megha Varshini Tamilarasan

Each AI miner participates in the
computational process while embedding a
ZKML-enabled certification module,
ensuring verifiable proof of execution
without exposing model parameters or
inference data. This cryptographic
attestation mechanism mitigates
adversarial modifications in the inference
pipeline and guarantees deterministic
correctness in model outputs.

The protocol enables low-latency,
hyperlocal AI inference infrastructure at a
global scale, optimized for real-time AI
systems such as humanoids, autonomous
robotics, and mission-critical cyber-
physical systems. By leveraging provably
secure computation and distributed
orchestration, CYBORG aims to establish a

We present a formal specification of the
Cryptographically Yielded Blockchain-
Orchestrated Resource Grid (CYBORG)
chain, a decentralized AI inference protocol
that integrates a Substrate-based runtime
with multiple interoperable local peer-to-
peer AI inference networks. Each network
comprises heterogeneous AI-compatible
hardware, optimized for domain-specific
machine learning applications and
orchestrated via a blockchain-backed
consensus mechanism.

CYBORG, built on Polkadot, establishes a
distributed AI execution environment
where inference workloads are partitioned
and executed across a network of
embedded accelerators.

Abstract

Lite Paper v2.0

2

fault-tolerant, trustless AI execution
framework that ensures scalability, privacy,
and economic viability for next-generation
machine intelligence

Cyborg is built with in mind,
fostering AI adoption through a
decentralized, cost-efficient, and privacy-
preserving inference network that supports
the infrastructure demands of an AI-driven
future.

Introduction

1.1 Nomenclature

In this paper, we introduce Cyborg
Network, a decentralized, blockchain-
governed AI inference protocol designed
to orchestrate globally distributed AI
processing nodes. Cyborg Network
leverages a hybrid incentive model,
integrating both cryptographic rewards and
fiat-based incentives, to drive enterprise
adoption while ensuring regulatory
compliance.

The term CYBORG originates from its
underlying architectural principle:
Cryptographically Yielded Blockchain-
Orchestrated Resource Grid. This
nomenclature reflects its core design—a
decentralized system where AI workloads
are securely allocated, executed, and
verified across a distributed network of
inference nodes.

An early conceptual version of Cyborg
Network was first outlined in research
discussions on off-cloud AI inference
scalability, addressing the challenges of
cost-efficiency, data sovereignty, and fault
tolerance. Unlike conventional cloud-based
AI execution models, Cyborg Network
proposes a globally scalable, trustless

 Vision 2030

 AI infrastructure that ensures deterministic
AI processing with cryptographic
attestation

1.2 Driving Factors

A decentralized AI inference network
must be fault-tolerant,
cryptographically verifiable, and
economically sustainable. Traditional
cloud-based inference pipelines suffer
from latency constraints, cost
inefficiencies, and opaque execution
environments, making them unsuitable
for AI systems requiring real-time,
deterministic, and privacy-preserving
computation. Cyborg Network
introduces a blockchain-governed,
hyperlocal AI execution layer,
eliminating single points of failure and
ensuring inference workloads remain
provably correct, accessible, and
censorship-resistant.

Bitcoin demonstrated the viability of
decentralized economic coordination,
ensuring immutable and censorship-
resistant transactions. Ethereum
expanded this model with Turing-
complete smart contracts, unlocking
programmable economic mechanisms
but still constrained by execution costs
and state coherency limitations.
Polkadot further evolved the paradigm
by enabling specialized, interoperable
blockchains, optimizing both scalability
and cross-network composability.
Cyborg Network builds on this
foundation, integrating zero-knowledge
attestations, decentralized scheduling,
and a hybrid incentive model to enable
distributed, privacy-preserving AI
inference at scale.

https://www.vision2030.gov.sa/en

Lite Paper v2.0

3

The architecture is governed by five core
principles:

1.	Resilience – Byzantine-resistant
execution with no reliance on centralized
entities.

2.	Verifiability – ZKML-powered proof
generation for deterministic and tamper-
proof inference validation.

3.	Scalability – Adaptive inference
placement across geographically
distributed AI accelerators, optimizing for
latency and efficiency.

4.	Economic Alignment – A hybrid
incentive model, combining crypto-
economic staking mechanisms with fiat-
based enterprise adoption pathways.

5.	State Coherency – Efficient cross-node
synchronization, ensuring computational
consistency across dynamic workloads.

Cyborg Network enforces deterministic
execution guarantees while ensuring AI
models operate with cryptographic
integrity, low-latency response times, and
regulatory-compliant data sovereignty. By
extending Polkadot’s principles of
scalability, interoperability, and economic
flexibility, it establishes a globally
distributed, blockchain-secured AI
processing framework, advancing
decentralized inference beyond traditional
paradigms.

1.3 Fundamentals

This section covers the core principles that
underpin the design and functionality of
our system, providing the necessary
technical background for understanding its
implementation.

1.3.1 Neural Networks

Neural Networks, structured as
interconnected layers of artificial neurons,
execute mathematical operations on input
data through computational units known as
operators. The connectivity of these layers
is governed by weighted edges, which are
iteratively adjusted during training, allowing
the model to learn. These weights, or
parameters, directly influence the
computational and memory demands of
inference.

As neural networks scale in complexity, so
do the computational requirements and
memory footprint necessary for both
training and inference. Increased depth,
neuron count, and architectural
sophistication introduce an exponential rise
in mathematical operations. Each
operation demands storage and
processing, creating bottlenecks on
resource-constrained devices.

Inference in Deep Neural Networks (DNNs)
involves propagating input data through
successive layers to generate an output.
Two primary constraints impact this
process:

	1.	Memory footprint – The storage required
for model parameters and intermediate
activations.

	2.	Computational intensity – The Giga
Operations Per Second (GOPS) needed
for execution.

A device with inadequate memory cannot
store the entire model, rendering inference
infeasible. Similarly, limited computational
throughput may introduce excessive
latency, making real-time AI processing
impractical on lower-powered hardware.

Lite Paper v2.0

4

To address this, we frame the core problem
as: How can large-scale AI inference be
performed on hardware-limited devices? In
practical terms, how can AI applications
leverage high-capacity models without
being constrained by local computational
limits?

By abstracting DNNs as computational
graphs, where data (tensors) flows
between operators, we can decompose
inference into distributed workloads.
Tensors, which represent multi-dimensional
data structures, are categorized into:

•	Input tensors (X) – External inputs or
static parameters.

•	Activation tensors (Y) – Intermediate or
final outputs generated by operators.

In the context of Cyborg Network, we
delegate tasks to a localized cluster of
custom AI accelerators that aggregate the
processing as a unified network by
combining individual differential neural
layers processed at different machines
within the same virtual network.

1.3.2 Edge Computing
 

Edge computing departs from traditional
cloud-based architectures by executing
computation closer to the data source,
reducing latency and optimizing resource
utilization. Unlike cloud models, edge
computing distributes computational tasks
across intermediate nodes such as
cloudlets, micro data centers, or dedicated
inference hardware, minimizing data
transmission overhead.

Shi et al. [4]–[6] define edge computing as
a network edge execution paradigm where
downlink data corresponds to cloud
services, and uplink data represents the
Internet of Everything (IoE).

Satyanarayanan [8] describes it as a model
that deploys computing and storage
resources closer to mobile devices and
sensors to reduce latency. Zha et al. [9]
extend this definition by emphasizing
resource unification across geographically
and network-proximate nodes, enabling
distributed compute, storage, and
networking for application services.

In an edge computing framework,
workloads are offloaded from cloud
infrastructure to edge nodes, leveraging
localized compute resources to process
data in real time. This approach enhances
network efficiency, reduces reliance on
cloud data centers, and supports low-
latency, high-bandwidth applications. The
architecture integrates compute, storage,
and networking capabilities at the edge,
addressing key industry requirements such
as real-time processing, application
intelligence, security, and privacy
preservation [10].

Edge computing is widely adopted in
scenarios demanding high-throughput,
low-latency execution, particularly in AI-
driven workloads, industrial automation,
and IoT applications. Research continues to
advance edge-native architectures,
optimizing distributed execution models
for fault tolerance, workload scheduling,
and secure data processing [10]–[14].

1.3.3 Zero-Knowledge Machine
Learning (ZKML) in Decentralized
Inference

The increasing opacity of proprietary
machine learning (ML) models has created
fundamental challenges in model
transparency, bias auditing, and result
reproducibility. While open-source model
architectures and weights have traditionally
enabled scientific reproducibility and
external validation, the commercialization

Lite Paper v2.0

5

 of foundation models—along with safety
concerns over unrestricted access—has
driven the industry towards closed-source
deployments. This shift significantly
impairs external verification, raising two
major concerns:

1.	Unverifiable Performance Claims – Model
providers can assert benchmark superiority
without independent validation, leading to
skepticism about reported accuracy,
robustness, and efficiency.

2.	Unintended Bias and Opaque Decision-
Making – Proprietary models prevent third-
party auditing for algorithmic fairness,
limiting the ability to detect and mitigate
systemic biases in real-world deployments.

Algorithmic audits and API-based
evaluations offer partial solutions but
remain impractical for high-risk ML
applications without public interfaces—
such as law enforcement predictive
models, financial risk assessments, and
internal enterprise AI systems. These
limitations necessitate cryptographic
mechanisms that allow external validation
without exposing proprietary model
weights or sensitive inference data.

1.3.4 Verifiable AI Inference via ZKML

Zero-Knowledge Machine Learning
(ZKML) enables proof-based verification
of model execution, ensuring that an AI
system adheres to declared performance
characteristics without revealing its internal
workings. Using succinct Zero-Knowledge
Proofs (ZKPs), an ML provider can
generate cryptographic attestations that
verify�

� The model executed correctly on a
given input without tampering�

� The inference result adheres to
documented performance standards
(e.g., accuracy, fairness constraints).

� The same model architecture and
parameters persist across different
inference instances, preventing silent
model degradation over time.

1.3.5 Integrating ZKML in
Decentralized AI Architectures

To enforce verifiable AI execution across
decentralized AI infrastructure, we
implement a hybrid ZKML framework that�
�� Generates Zero-Knowledge Proofs for

Model Execution – Ensuring integrity
and correctness of inference results,
even on untrusted nodes�

�� Enables Selective Disclosure for Model
Auditing – Providing cryptographic
evidence of fairness and safety without
exposing proprietary model internals�

�� Ensures On-Chain Verifiability –
Embedding ZKML proofs into
blockchain-based decentralized
inference systems for persistent,
tamper-proof validation.

We shouldn’t just trust the claims of AI model providers

Why?

Impossible to know if a
provider switches out or
changes the model it’s
using at inference

There are cost and
efficiency reasons for
model providers to use
cheaper or worse models

High-risk applications
require verifiably consistent
models that are aligned and
properly evaluated

Create a Verifiable Evaluation Attestation for a model

Step 1

A trained model is
evaluated on benchmark
data by the developer

Zero-knowledge proofs
of valid inference are
generated

These proofs are packaged
and shared as a verifiable
evaluation attestation

Check that model inference is correctly and honestly performed

Step 2

A new proof of model
inference is generated for
this user

Checks if this proof
matches the model weights
hash published earlier

The closed-source model
is deployed to a future
user by a provider

Lite Paper v2.0

6

1.4 Trustless AI Execution in
Distributed Inference Networks

As AI inference systems become
increasingly integrated into critical domains
such as healthcare, finance, and security,
the need for verifiable execution
mechanisms grows in importance.
Traditional inference pipelines rely on
centralized control and opaque verification
processes, limiting trust in model outputs.
In decentralized environments, where
multiple nodes participate in inference
computation, ensuring the integrity and
privacy of AI execution becomes a complex
challenge.

1.4.1 Security and Privacy in
Distributed AI Inference

In high-stakes inference scenarios,
cryptographic proof mechanisms are
required to guarantee correctness while
preserving confidentiality. A primary
challenge arises when inference nodes
operate outside a trusted execution
environment, introducing risks such as:

	•	Result Tampering – Malicious or faulty
nodes may return manipulated outputs.

	•	Unverifiable Execution – Model
computations occur as a “black box,”
preventing external validation.

	•	Data Privacy Leakage – Sensitive input
data may be exposed to untrusted
compute nodes.

To mitigate these risks, Zero-Knowledge
Proof (ZKP) systems provide a framework
for verifiable yet privacy-preserving
inference execution. By leveraging succinct
proofs, inference nodes can
cryptographically demonstrate that

computations were executed correctly
without revealing model internals or input
data.

1.4.2 Zero-Knowledge Verification for
Model Integrity

Decentralized inference introduces unique
security threats, as individual nodes may
behave dishonestly, affecting aggregated
outputs. To address this, Zero-Knowledge
Proof-based attestation mechanisms
enable:

	•	Proof of Correct Execution – Each node
generates a ZKP confirming that its
assigned model computations were
performed as expected.

	•	Selective Disclosure for Auditing –
Cryptographic attestations allow external
verification of inference correctness
without exposing proprietary model
architectures.

	•	Tamper-Proof Verification – On-chain
integration of proofs ensures that any
deviation from declared performance
constraints is detectable.

These verification mechanisms provide a
cryptographic assurance layer, ensuring
that AI inference outputs remain
trustworthy even in untrusted or
adversarial environments.

1.5 Scalability Challenges in Secure
Inference

Despite the advantages of cryptographic
verification, Zero-Knowledge Machine
Learning (ZKML) remains computationally
expensive. Existing ZKP-based verification
methods introduce substantial latency, with
some proof-generation processes taking
several minutes per token in large-scale

Lite Paper v2.0

7

language models. This computational
overhead conflicts with the real-time
performance demands of AI applications,
necessitating further optimizations in:

•	Proof Generation Speed – Reducing the
computational cost of generating verifiable
inferences.

	•	Efficient Proof Aggregation – Enabling
multiple inference nodes to contribute
proofs collectively, rather than verifying
each result in isolation.

	•	Hybrid Off-Chain and On-Chain
Validation – Balancing security and
efficiency by performing proof generation
off-chain while committing essential
verification data on-chain.

Addressing these challenges is critical for
the practical deployment of verifiable
inference across distributed AI networks,
ensuring that trustless execution does not
compromise efficiency.

2. ZK Verification Process

This section explores the application of
Zero-Knowledge (ZK) techniques in
verifying AI inference integrity. It details
how models are decomposed, computed
across distributed nodes, and securely
validated without exposing sensitive data

2.1.1 Model Decomposition and
Verification.

 A fundamental aspect of decentralized AI
inference is the division of models into
multiple computational components, each
processed by separate computing nodes.
These nodes execute their assigned
operations and forward results to a central
verifier. For example, a foundation model

like LLaMA-3 [11] can be decomposed
layer-wise, where each node sequentially
processes specific layers, or width-wise,
enabling parallel execution. The choice of
decomposition strategy depends on
application-specific requirements, and our
approach supports both.

To ensure correctness and integrity in this
setting, Zero-Knowledge Proofs (ZKPs)
enable verification without exposing
proprietary model weights. Each
computing node (prover) generates a
proof of correct inference execution, which
the central server (verifier) validates
without accessing the model’s internal
parameters. This prevents adversarial
inference attacks while maintaining privacy.

2.1.2 Commitment and Proof
Generation.

Each node commits to its assigned model
fragment and computation results using
cryptographic commitments. The proof
generation process follows three steps:

1.	Commitment: The prover commits to its
model fragment, ensuring its integrity while
keeping the weights hidden. This is
achieved using generalized Pedersen
commitments over an elliptic curve group
G, formulated as [12]:

2.	Proof Generation: The prover executes
inference and produces a proof
demonstrating correct computation under
a finite field F, ensuring that operations—
including matrix multiplications, activation
functions, and token transformations—are
faithfully executed

(1)

Lite Paper v2.0

8

3.	Verification: The central server verifies
the proof, ensuring that the model
decomposition is correctly followed and
computations are consistent with expected
outputs. This validation can be performed
interactively or non-interactively using
protocols such as for
arithmetic operations and bit
decomposition or lookup tables for non-
arithmetic functions.

Sum-Check

Mathematically, let f: represent the
transformation performed at a given layer
of a foundation model, where the prover
computes y = f(x, w) for some private
model parameters w. The verifier must
confirm that y is computed correctly
without learning w. This is achieved through
a ZKP of correct execution.

2.1.3 Verification of Model Execution

Each prover commits to the computation
and provides a proof of correctness. The
verification process ensures:

Figure 1: Zero-knowledge proof of circuit 10 = (w1 +
w2)(w2 + 1) between a prover (P) and a verifier (V).
Hereby, the goal of the prover is to prove to the
verifier that P knows a w1 and w2 such that the
claimed result “10” is indeed calculated by the
equation (w1 +w2)(w2 + 1) (which is denoted by a
circuit). The witness w1 = 4 and w2 = 1 are the secret
of the prover. Zero-knowledge proof consists of a
commitment process (denoted by the safe box) in
the beginning, followed by several back-and-forth
challenge and response processes between P and V
in the interactive scenario. In the non-interactive
scenario, the prover can challenge him or herself by
the Fiat-Shamir heuristic [13] and the verifier only
needs to verify the last response from the prover.

	1.	The claimed inference follows the
expected model structure.

	2.	The computations remain within the
expected finite field constraints.

	3.	The proof remains efficient, avoiding
excessive computational overhead.

Since neural networks contain both
arithmetic (e.g., matrix multiplications) and
non-arithmetic (e.g., activation functions,
token transformations) operations,
verification requires encoding both types
within the proof system.

2.1.4 Encoding Non-Arithmetic
Operations in Zero-Knowledge Proofs

A fundamental challenge in verifying neural
network execution lies in non-arithmetic
operations such as activation functions.
Two primary techniques are employed:

1. Bit Decomposition for Activation
Functions

Consider the ReLU activation function [14]:

(2)

where is the Hadamard product, abs (Z)
is the element-wise absolute value, and

(3)

10

1w1 w2

Witness

w1 = 4 w2 = 1...
Top Secret

challenger

challenger

response

response

P V

w1, w2

Zero-knowledge
V can’t know

the witness

Soundness
if the circuit is invalid,

the verifier rejects

Completeness
if the circuit is valid,

the verifier accepts

Poly g
Top Secret

Witness

P V

g
Open: Allow V to evaluate g

at a random vector (r1,...,rv)

if H = g1(0) + g1(1)

if g1(r1) = g2(0) + g2(1)

if g2(r2) = g2(0) + g3(1)

if gv(rv) matches commitment

https://people.cs.georgetown.edu/jthaler/sumcheck.pdf

Lite Paper v2.0

9

To prove correct execution of f, the prover
must show that its computed output Y
matches a valid table entry. This is
formulated as a subset argument:

Using the Sum-Check protocol, subset
verification reduces to proving that the
following polynomial identities hold:

By taking the logarithmic derivative, we
derive the final rational function identity:

(9)

(10)

(11)

We denote the binary representation of z
as , where (e.g., 128 or
256 in a finite field of order p). The bit
decomposition must satisfy:

Using the the
correctness proof can be merged into a
single Sum-Check equation:

Schwartz-Zippel Lemma,

2.1.5 Lookup Table Verification for
Non-Arithmetic Computations

For operations such as , which are
computationally expensive in a ZKP
setting, we use a lookup table approach.
Let T be a shared table containing valid
input-output pairs for a non-arithmetic
operation f, structured as:

 Softmax

where is a randomly chosen field

element to ensure probabilistic soundness.

To verify ReLU execution in zero-
knowledge, we enforce reconstruction
constraints:

(4)

(5)

(6)

(7)

(8)

The prover commits to , and this
can be verified efficiently in zero-
knowledge using the Sum-Check protocol.

The (1) satisfies the
binding property: once sent to the verifier,
the opening information (r, S) cannot be
changed by the prover. At first glance,
proving the ability to "open" the
commitment may seem to require
revealing the witness s to the verifier,
potentially violating the zero-knowledge
property. However, this concern is
mitigated due to the homomorphic
property of the Pedersen commitment.
Specifically, given two commitments
Commit (S1, r1) and (S2, r2) corresponding
to tensors S1 and S2, we have:

Pedersen commitment

which results in the commitment of (S1 +
S2).

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Commitment_scheme

Lite Paper v2.0

This property enables the prover to
demonstrate knowledge of S without
disclosing it by committing instead to a
linear transformation:

where D is a d-dimensional hiding vector
chosen by the prover, and e is a random
scalar challenge sampled by the verifier.
The vector D ensures S.e+D that appears
random to the verifier, preserving zero-
knowledge. The existence of e guarantees
special soundness: executing the protocol
with two different challenges e1 and e2
leads to

Since there are 2d unknowns (S and D)
and 2d equations, two valid transcripts (S,
e1, D) and (S, e2, D) uniquely determine S
and D through Gaussian elimination,
achieving special soundness.

(12)

(13)

Algorithm 1: Commitment Opening
Procedure

This algorithm enables the prover to
convince the verifier that they know a
witness and a witness that are
openings of commitments:

such that , where h, g are randomly
sampled generators from an elliptic curve
group. The algorithm is provably complete,
exhibits zero-knowledge, and ensures
special soundness.

Steps:

1. Publicly known generators h, g, g1, ,
gd are randomly sampled from the elliptic
curve group G.

2. The prover sends commitments:

3. The prover picks and
hiding factors , then sends
commitments:

4. The verifier selects a random challenge

 and sends it to the prover.

5. The prover computes transformed
values:

6. The prover sends and to the
verifier. These conceal , ensuring
zero-knowledge.

7. The verifier computes:

8. The verifier computes and its
commitment:

It then checks:

9. If both checks pass, the verifier accepts;
otherwise, they reject.

This algorithm ensures that the prover can
demonstrate knowledge of S and t without
revealing them, leveraging the
homomorphic properties of Pedersen

10

Lite Paper v2.0

commitments. The zero-knowledge
property remains intact, while the protocol
guarantees soundness under multiple
executions.

This guarantees that Se is the unique
multilinear polynomial over F such that

Se(u) = S(u) for all

Using this multilinear extension, we can
rewrite arithmetic verification as the
verification of the sum of a multi-variable,
low-degree polynomial g:

which simplifies verification in zero-
knowledge proof systems.

2.1.8 Sum-Check/GKR Protocol

Algorithm 2 describes the Sum-Check
protocol (also known as the GKR protocol
[15])for verifying Equation (17). The
protocol proceeds in rounds [17]. In the
first round, the prover sends a polynomial
g1 (X1) and claims:

By applying the Schwartz-Zippel Lemma
recursively, the protocol continues until the

final round, where all claims can be
verified with high probability (failure
probability at most d/|F|, where d is the

If this claim holds, then H=g1(0) + g1(1) . To
validate, the verifier randomly samples
r1 ~ F and requests proof that:

In the second round, the prover sends
g2(X2) and claims:

2.1.7 Proofs for Arithmetic Operations

Multilinear Extension

Zero-knowledge proofs primarily operate
within a finite field F, rather than the real
field R used in floating-point calculations.
Arithmetic operations in this setting consist
of addition and multiplication, which can be
efficiently verified using the Sum-Check
protocol, particularly the GKR protocol [15,
16]. The key idea in the Sum-Check
protocol is to express a d-dimensional
tensor as a multi-variable polynomial
 via a transformation known as
multilinear extension [18]:

(14)

where represents the binary
index of tensor S, and is
the unique Lagrange interpolation
polynomial:

which satisfies the interpolation property:

(17)

(18a)

(18b)

(18c)

11

(16)

(15)

Lite Paper v2.0

polynomial degree). The final claim gv(rv) =
g(r1, r2,, rv) can be verified via the
commitment opening. The Sum-Check
protocol ensures completeness through its
structured proof construction. Soundness
follows from recursive applications of the
Schwartz-Zippel Lemma, while zero-
knowledge properties are guaranteed by
the Pedersen commitment scheme.

2.1.9 Reducing Linear Layers to Sum-
Check Protocol   

Linear layers are fundamental components
of foundation models and can be
mathematically represented as matrix
multiplications. Given matrices

such that C=AB, we define functions:

(19)

Where and represent

binary indices of i and j, respectively. The

multilinear extensions of these

functions satisfy:

Since Equation (20) conforms to the form
of Equation (17), we can apply the Sum-
Check protocol to verify the correctness of
linear layers. Specifically, we define a
degree-2 polynomial

and verify

at a random evaluation point .

This enables the efficient verification of
matrix multiplications within zero-
knowledge proof systems.

3. System Design & Operation

This section provides an in-depth look into
the structure and functionality of Cyborg
Network. We detail how our network
topology, architecture, and workflow
enable AI inference at the edge.
Additionally, we explore the role of miners
in contributing computational power and
the Cyborg Connect application that allows
users to deploy, manage, and monitor AI
workloads efficiently.

3.1 Network Topology   

The Network consists of multiple
interdependent components, each
facilitating different aspects of AI inference
execution and verification. These
components include the blockchain, miner,
Cyborg Connect (frontend), Oracle
Feeder, Cyborg Proxy, and Storage Nodes,
as illustrated in Diagram 2.

3.1.1 Worker Nodes and Execution
Layer

Miners within the network function as
worker nodes, a blockchain-native node
definition specific to Cyborg. These nodes
are non-consensus participants, operating
independently of the blockchain’s
validation layer. Upon joining the network, a
worker node remains in an idle state until
assigned an AI model for inference by the
runtime. Task assignment follows a

12

(20)

Miner Base

SEV Confidential EV

Miner-Runtime

Compiler

AI Inference

Platform

ZK Engine

Agent

Offchain Worker
(Alternatively this can be

done with the oracle)

Miner

Cyborg Connect Cyborg Proxy Oracle Feeder

Parachain

AMD Server

User

Application

Storage

Starts

/Deletes

Prompts

/Inference

Results

St
at

us
 S

ub
m

is
si

o
n

St
at

us
 C

he
ck

Metrics & Metadata

Model Download

Model Upload

Attestation Report (Registration)*
Proof of Model Execution*

Lite Paper v2.0

deterministic scheduling mechanism that
factors in node availability, compute
capacity, and latency constraints.

Once inference execution begins, the
miner generates periodic resource
consumption reports, logging memory,
compute cycles, and power usage. These
reports are relayed to the blockchain to
maintain an immutable record of execution
costs. In parallel, the miner generates
ZKML proofs, which serve as cryptographic
attestations of the model’s output,
ensuring computational integrity. The
blockchain verifies these proofs to validate
inference correctness without exposing the
underlying model weights or input data.

3.1.2 Storage and Model Management

AI models and associated weight files are
stored in a distributed, cryptographically
secured storage layer. This layer is
implemented using CESS, a decentralized
storage protocol optimized for high-
performance data retrieval. Models are
encrypted before storage, and only
authorized worker nodes can decrypt them
upon task allocation. The storage nodes
operate independently from inference
nodes, ensuring a separation between
compute and data layers.

3.1.3 User Interaction and
Authentication

Users interact with the system via Cyborg
Connect, a web and mobile interface for
managing inference requests. The
interface does not directly communicate
with the blockchain; instead, a proxy server
handles user authentication and dashboard
data retrieval. Private key authentication is
required to decrypt user-specific inference
logs, ensuring that only authorized users

 can access their execution data.

3.1.4 Oracle Integration and Data Flow

The Oracle Feeder serves as a bridge
between the blockchain and the off-chain
inference network. It transmits task
parameters, model assignments, and
inference results between the on-chain
scheduling logic and off-chain worker
nodes. The oracle operates
asynchronously, ensuring low-latency data
propagation while maintaining message
integrity through cryptographic signatures.

The architecture follows a modular design,
with independent execution, storage, and
verification layers interacting through
cryptographically secured communication
channels. Each component operates in a
permissionless environment, where task
allocation, execution verification, and cost
settlement occur without a centralized
coordinator.

3.2 The Miner   

The Cyborg miner is a purpose-built, high-
performance edge server designed as an
AI accelerator and blockchain node. Built
on Nvidia’s Jetson architecture, it
integrates various hardware components
to serve dual functions:

13

Lite Paper v2.0

as an AI inference engine and as a fully
operational blockchain node within the
Cyborg Parachain ecosystem. The miner is
equipped with 2TB of NVMe SSD storage,
leveraging AES encryption for data-at-rest
protection, ensuring high throughput and
secure storage for large-scale AI models
and datasets.

In terms of computational capability, the
Cyborg miner is optimized for AI inference,
capable of delivering up to 200 TOPS
(Tera Operations Per Second). This
performance enables the efficient
execution of computationally intensive
models such as deep learning inference
tasks.

The miner operates strictly within the
Cyborg blockchain network. It is pre-
configured to function as a worker node in
the blockchain, which ensures that all
operations, including AI model assignments
and task execution, are orchestrated
through the Cyborg Connect platform.
Communication with the miner is mediated
via the blockchain’s runtime environment,
meaning the miner is not directly controlled
by external commands but rather by on-
chain instructions, enhancing security and
consistency.

Geo-tagging of the miners ensures precise
location tracking for optimal model
deployment. This feature allows users to
deploy models on miners located in
specific geographic areas, improving
inference performance by reducing latency
and increasing computational efficiency.

The Cyborg miner is designed to be Zero-
Knowledge (ZK) ready, supporting Zero-
Knowledge Proof (ZKP) mechanisms. This
feature facilitates privacy-preserving
computations and secure validation of AI

model outputs without disclosing sensitive
data. The ZK architecture is fully integrated
into the miner’s execution pipeline,
enabling the secure execution of models
while maintaining confidentiality and
integrity, particularly in scenarios requiring
proof of correctness without exposing the
underlying model or input data.

The Cyborg miners will be exclusively
manufactured and distributed globally by
our organization, ensuring consistent
quality control and supply chain
management. These miners will be made
available for purchase directly to the public,
with full technical support and integration
capabilities. Additionally, we will establish a
dedicated Customer Success team,
composed of experts in both AI and
blockchain technologies, to assist users
with any inquiries or technical challenges
they may encounter. The team will provide
support for deployment, configuration,
troubleshooting, and optimal usage of the
Cyborg miner within the broader
ecosystem, ensuring a seamless user
experience.

3.3 Cyborg Connect

  
Cyborg Connect is a web and mobile-
native software platform designed to
deploy pre-trained AI models across
globally distributed AI miners.

Protocol:

CPU:

Memory:

eMMC:

OS:

Location:

NVIDIA Ampere GPU

Cortex-A78AE

32 GB

64GB eMMC 5.1

Ubuntu 22.04 LTS

Pardo, 28049 Madrid, Spain

Server Specifications

/opt/cyber/go-cyber/go-cyber config

/opt/cyber/go-cyber/node2

"CENT_SECRET"

http://10.10.99.2:8000

 /

 /

--dataDir=

--centSecret=

--centUrl=

1

1

NAME READY STATUS

coredns-569fd64d84-5q5pj

node-controller-hx4xd

1

1

Running

Running

...

Logs

Nvidia Jetson
Cyber Lite

CPU Usage

View Details

85%

RAM Usage

View Details

40%

Disk
Usage

View Details

75%

256 GB

128 GB

64 GB

RAM Usage

Free 1.2 GB

24-11-2022 06:27:00

1 hour

Dashboard

14

Lite Paper v2.0

Built on the Cyborg blockchain, the
platform leverages its secure and
transparent architecture while integrating
key API-backed services:

	•	Payment Gateways – Supports seamless
transactions in fiat and cryptocurrency,
offering pay-per-use and subscription
options.

	•	KYC & Compliance – Implements KYC/
AML checks via Sumsub to ensure
regulatory compliance while maintaining
privacy.

	•	Resource Optimization – Dynamically
allocates workloads based on
performance, availability, and cost
efficiency.

	•	Model & Data Security – Ensures secure
model deployment with CESS-encrypted
storage and privacy-preserving techniques
like homomorphic encryption and split
learning.

	•	Real-time Monitoring & Analytics –
Provides insights into AI workload
performance, miner uptime, and
operational efficiency through an intuitive
dashboard.

Deployment Process

	1.	The user submits a task via Cyborg
Connect.

	2.	The app generates an ephemeral
keypair and uses a Diffie-Hellman
exchange with the worker’s public key to
establish an encryption key for CESS.

	3.	The ephemeral public key and model file
ID are recorded on the Cyborg Parachain.

4.	Miners monitor the parachain for task
assignments.

	5.	Using the Diffie-Hellman secret, the
miner downloads and decrypts the model
(compilation may also be required).

	6.	The miner submits an attestation report
confirming its execution state.

	7.	The Cyborg Parachain validates the
attestation report.

	8.	The miner exposes endpoints for real-
time monitoring via Cyborg Agent and
inference result retrieval.

	9.	The user decrypts the results using their
Diffie-Hellman key.

4. Scalability and Security in AI
Workloads

Efficient AI deployment in a decentralized
infrastructure requires advanced
techniques to balance computational
efficiency, security, and privacy. This
section explores key optimizations such as
model compression and sharding for
resource-constrained environments, along
with privacy-preserving mechanisms like
secure multi-party computation (MPC)
and homomorphic encryption. Additionally,
we detail security protocols that ensure
model integrity, prevent adversarial
interference, and maintain confidentiality
within AI execution environments.  

4.1 Model Compression

Deploying machine learning models in
production introduces constraints that are
often overlooked during prototyping. In
real-world applications, models must

15

Lite Paper v2.0

handle high request loads while maintaining
low latency and high throughput.

	•	Latency: The time taken to generate a
prediction after receiving an input.

	•	Throughput: The number of inference
requests a system can process per unit
time.

Optimizing for these factors requires
accelerating model inference while
minimizing resource consumption. Model
compression techniques achieve this by
reducing model size and computational
complexity, often leading to significant
speedups. While compression primarily
targets memory efficiency, it also
enhances inference performance, blurring
the distinction between compression and
optimization. The following sections
explore key strategies for improving model
efficiency.

4.1.1 Low Rank Factorization   

Low-rank factorization is a structured
model compression technique that
decomposes weight matrices in neural
networks into lower-rank approximations,
reducing both computational complexity
and memory footprint. Given a weight
matrix , the goal is to approximate it as the
product of two smaller matrices:

This decomposition constrains the
network’s representational capacity while
preserving critical information, leading to
reduced inference latency and lower
memory usage.

In convolutional neural networks (CNNs), a
practical case of low-rank decomposition
involves factorizing 3×3 convolutions into

1×1 convolutions, as seen in SqueezeNet,
effectively reducing parameter count and
computational overhead.

In large language models (LLMs), low-rank
adaptation (LoRA) [18] applies a similar
principle to fine-tuning. Instead of
updating the full parameter set of a pre-
trained model, LoRA introduces low-rank
matrices A and B into specific layers,
allowing efficient adaptation to new tasks
with minimal additional parameters. By
freezing the original model weights and
optimizing only the low-rank matrices,
LoRA significantly reduces the
computational burden of fine-tuning while
maintaining expressivity.

4.1.2 Pruning

Pruning is a model compression technique
that reduces the size and computational
complexity of neural networks by
eliminating redundant or low-importance
parameters. Originally introduced in
decision trees to mitigate overfitting by
removing unnecessary branches, pruning
has since been extended to neural
networks, where it involves removing
weights (edges) or entire neurons (nodes).

Pruning strategies fall into two main
categories:

	•	Structured Pruning: Entire neurons,
channels, or layers are removed, leading to
a direct reduction in the model’s size and
computational cost. The resulting weight
matrices shrink, improving both inference
speed and memory efficiency.

	•	Unstructured Pruning: Individual
connections (edges) are removed,
creating sparse weight matrices. While this
does not reduce the model’s nominal size,
it enables specialized sparse matrix

16

Lite Paper v2.0

optimizations for efficient storage and
computation.

Mathematically, given a weight matrix W,
pruning applies a mask M such that:

Where represents the Hadamard product,
and M determines which parameters are
retained (1) or pruned (0).

The challenge lies in determining which
weights to prune while minimizing accuracy
degradation. Several approaches exist,
including magnitude-based pruning
(removing low-magnitude weights) and
more advanced techniques such as
Optimal Brain Damage (OBD) and Optimal
Brain Surgeon (OBS), which leverage
second-order derivative information to
assess weight importance.

We will employ low-rank factorization in
Cyborg Connect to reduce computational
overhead by decomposing large weight
matrices into smaller, low-rank
components. This enables efficient fine-
tuning and adaptation of pre-trained
models with minimal resource
consumption, optimizing performance
across decentralized AI miners.

Similarly, pruning eliminates redundant
parameters, reducing model size and
memory footprint without sacrificing
accuracy. By leveraging structured pruning
for direct computational savings and
unstructured pruning for memory-efficient
sparse representations, we ensure AI
workloads run with maximum efficiency,
maintaining high throughput with minimal
resource expenditure.

4.2. Secure and Privacy-Preserving
Inference

Ensuring security and privacy in
decentralized AI inference requires robust
verification mechanisms and data
protection strategies. Our approach
balances efficiency with rigorous integrity
checks to mitigate risks such as tampering,
unauthorized access, and data leakage. To
achieve this, we integrate Finality-Based
Verification (FBV) for model integrity and
Split Learning (SL) [19] for privacy-
preserving inference. These techniques
enable secure execution across
decentralized AI miners while maintaining
high throughput and computational
efficiency.

4.2.1 Finality Based Verification

Given the computational and scalability
challenges associated with ZKML for
verifying the integrity of LLMs in
decentralized systems, we propose a
Finality-Based Distribution Verification
(CDV) strategy for general inference
scenarios. This method leverages the
collective agreement of multiple nodes to
ensure correctness and integrity of model
execution while preserving data privacy.

Finality-Based Verification Process

1. Redundant Execution: A subset of nodes
{1, 2, ..., k} independently computes the
output yi for the same input x using the
model M with parameters θ:

2. Output Collection: The outputs {y1, y2,
..., yk} are securely collected for evaluation,
requiring efficient communication
protocols to protect data integrity.

3. Consensus Determination: A consensus
algorithm C evaluates the collected
outputs to determine an agreed-upon

17

Lite Paper v2.0

result ycon:

The consensus is valid if it meets a
predefined criterion, such as majority
agreement or a more sophisticated
statistical validation.

4. Verification and Finalization: If the
consensus result aligns with outputs from a
sufficiently large subset of nodes, the
model execution is verified. Otherwise,
discrepancies indicate potential integrity
issues, triggering further investigation or
corrective measures.

This Finality-Based approach ensures
robust verification of model integrity
across decentralized nodes, mitigating the
impact of faulty or malicious actors.

Verification in the Context of Model
Sharding

In decentralized AI, ML models may be
sharded across multiple nodes to enhance
scalability. Each node i possesses a unique
shard Mi of the complete model M,
necessitating a specialized approach to
CDV for fragmented model execution.

1. Shard Redundant Execution: Each shard
Mi of the complete model M undergoes
redundant execution by a designated
subset of nodes. Each node within the
subset computes:

This redundancy enables cross-
verification, strengthening the validation
process.

2. Redundant Output Collection and
Verification: The outputs {yi,1, yi,2, ..., yi,m}

for each shard i are collected and evaluated
through a shard-specific consensus
mechanism:

The redundancy across nodes enhances
the detection of discrepancies or faults in
each shard

3. Shard Verification Completion: Upon
reaching consensus for each shard i, the
integrity of that shard’s execution is
confirmed before proceeding to the next
stage.

4. Model Reconstruction: Once each shard
has been independently verified, the
shard-specific consensus results {ycon,1,
ycon,2, ..., ycon,k} are combined to
reconstruct the final model output:

This comprehensive verification framework
ensures the correctness and security of AI
inference within decentralized
environments while maintaining scalability
and efficiency

4.2.2 Data Privacy Protection via Split
Learning

Recognizing the challenges posed by
encrypting data for use in decentralized
inference systems, we adopt Split Learning
(SL) as a pragmatic solution to facilitate
secure and efficient computation on
encrypted data. Traditional encryption
methods such as Homomorphic
Encryption (HE), while securing data at rest
and in transit, render direct computation
costly by obscuring its format and
structure.

18

Lite Paper v2.0

This limitation is particularly problematic for
processing with LLMs within a
decentralized framework, where data
privacy cannot be compromised.

Split Learning (SL) addresses these
concerns by partitioning the computational
model, allowing for data to be processed in
segments without revealing sensitive
information. In this approach, user data is
protected by ensuring that it is never
directly transmitted to any nodes—only the
data embeddings from specific layers are
exchanged, and each node accesses only
the embeddings of certain layers.

Consider a neural network model N, such
as Llama 2, composed of a sequence of 32
layers {L1 L2,.........,L32}, each with its own
set of parameters and activation
function . The input to the network is X,
and the output of the i-th layer, given input
xi, can be mathematically described as:

where Wi and bi are the weight matrix and
bias vector of the i-th layer, respectively,
and is a nonlinear activation function such
as ReLU, sigmoid, or tanh.

Assuming the model is split at layer k,
where the client handles layers {L1,......., Lk}
and the server handles layers
{Lk+1,......., L32}, the client computes the
intermediate representation Z as follows:

This intermediate representation Z is then
transmitted to the server, which continues
the computation:

The loss function L(Y, Ytrue) computes the
error between the network output Y and
the true labels Ytrue , and the gradient of

the loss with respect to the model’s
parameters is computed through
backpropagation:

For privacy protection during the
transmission of Z from client to server,
differential privacy techniques may be
applied. Defining a privacy metric P that
quantifies information leakage from Z, a
proof of privacy preservation can be
demonstrated such that for any

 -differential privacy guarantee, the
information leakage remains below a
predefined threshold:

It is noted that using differential privacy
with SL enhances privacy at the cost of
inference quality. Thus, within our
framework, this is implemented as a
tunable parameter, allowing users to
balance privacy and model performance
based on their requirements.

By leveraging Split Learning, we effectively
navigate the complexities of data
encryption within our decentralized
inference system for LLMs. This approach
preserves the confidentiality and integrity
of user data while ensuring the operational
feasibility of complex model computations,
demonstrating a sophisticated balance
between privacy preservation and
computational efficiency.

5. Use Cases

This section provides a technical overview
of key applications for Cyborg Network,
emphasizing decentralized AI inference,
model optimization, and privacy-
preserving techniques. While the use cases

19

Lite Paper v2.0

listed here demonstrate broad industry
impact, further expansions can be tailored
based on specific enterprise needs.

5.1 AI Agents

Cyborg Network provides a robust
execution layer for AI agents, enabling
them to perform real-time decision-
making, dynamic adaptation, and
autonomous coordination across multiple
domains. By leveraging distributed AI
inference, agents can process large-scale
data locally, avoiding centralized
bottlenecks. Secure model verification
ensures execution integrity, making it ideal
for self-learning systems in smart cities,
autonomous robotics, and industrial
automation.

5.2 Smart Cities

From traffic optimization to predictive
maintenance, smart city infrastructure
benefits from real-time AI inference at the
edge. Cyborg Network deploys AI models
across public spaces and municipal IoT
networks, reducing latency and cloud
dependency. Privacy-preserving
computation ensures that sensitive urban
data remains secure while allowing
federated intelligence across city nodes.

5.3 Autonomous Mobility

Autonomous vehicles (AVs) require low-
latency perception models for navigation,
object detection, and real-time decision-
making. Cyborg Network enables
decentralized inference, allowing AVs to
process local sensor data while offloading
complex computations to nearby nodes.
Optimized model execution through
pruning and quantization ensures faster
response times and reduced power

consumption.

5.4 Industrial IoT

AI-driven predictive maintenance, anomaly
detection, and process automation
demand efficient inference on-site,
eliminating the need for constant cloud
connectivity. Cyborg Network facilitates
secure split learning, allowing
manufacturers to process proprietary data
locally while benefiting from distributed
intelligence across multiple production
lines.

5.5 Public Safety & Surveillance

AI-powered surveillance systems rely on
real-time video analytics for anomaly
detection, facial recognition, and threat
identification. Cyborg Network enables
distributed inference across edge nodes,
reducing bandwidth consumption and
improving response times. The Finality-
Based Verification mechanism ensures that
AI-generated alerts remain tamper-proof,
while differential privacy safeguards
sensitive biometric data.

5.6 Wearables & Personal AI

Wearable devices generate continuous
biometric and behavioral data that require
low-latency, on-device AI processing.
Cyborg Network supports context-aware
AI assistants, gesture recognition, and
personalized health monitoring, ensuring
that private user data remains encrypted
while still benefiting from cloud-
augmented intelligence.

5.7 Medical AI

Decentralized AI inference enhances
medical imaging, disease prediction, and

20

Lite Paper v2.0

real-time patient monitoring while
complying with healthcare privacy
regulations. Hospitals can execute AI
models on-premises without exposing
patient data to external cloud servers. Fully
Homomorphic Encryption (FHE) and ZK
verification ensure both privacy and
execution integrity, facilitating secure AI-
driven diagnostics and research.

5.8 Agriculture & Precision Farming

Cyborg Network enables AI-driven
automation in agriculture, optimizing crop
yield prediction, pest detection, and
autonomous farming machinery.
Distributed inference ensures low-latency
decision-making even in remote areas,
while model compression techniques
enable AI execution on resource-
constrained IoT devices.

5.9 Decentralized Cloud Services

Beyond industry-specific applications,
Cyborg Network serves as a foundation for
decentralized cloud computing, allowing
enterprises to deploy AI workloads
dynamically without relying on centralized
cloud providers. Developers can optimize
for cost, performance, and security, while
maintaining full ownership of their models
and data.

Conclusion:

The Cyborg Network is poised to
transform the landscape of edge
computing by delivering a robust,
decentralized, and transparent platform
that caters to a wide range of industries
and applications. Through real-time data
processing and analysis, we're committed
to providing unparalleled data privacy and
security to meet the growing demand for

efficient and low-latency solutions in an
increasingly connected world. By
leveraging the power of blockchain
technology, the Cyborg Network goes
beyond traditional cloud computing and
data centers, nurturing an ecosystem of
edge server providers, developers, and
end-users. Our platform encourages
participation and collaboration, making
decentralized edge computing accessible
and affordable for everyone.

In conclusion, the Cyborg Network is an
ambitious vision, not just a project. Join us
to transform data processing, transmission,
and protection, and create a more
connected, secure, and efficient world.

21

